首页> 外文学位 >The development and implementation of numerical tools for investigation into the granular dynamics of solid solar system bodies.
【24h】

The development and implementation of numerical tools for investigation into the granular dynamics of solid solar system bodies.

机译:开发和实施用于研究固体太阳系物体颗粒动力学的数值工具。

获取原文
获取原文并翻译 | 示例

摘要

The work advanced in this thesis joins together the disciplines of planetary science and granular physics. Grain dynamics have played a prominent role in the evolution of our Solar System from planetesimal formation billions of years ago to the surface processes that take place today on terrestrial planets, moons, and small bodies. Recent spacecraft images of small Solar System bodies provide strong evidence that the majority of these bodies are covered in regolith. This regolith ranges in size from the fine powder found on the Moon to large rocks and boulders, like the 27 m Yoshinodai boulder on the small asteroid, Itokawa. Accordingly, the processes that take place on the solid bodies of the Solar System vary widely based upon the material properties of the regolith and the gravitational environments on their surfaces. An understanding of granular dynamics is also critical for the design and operations of landers, sampling devices and rovers to be included in space missions. Part of my research is concerned with the development of numerical tools that have the ability to provide explanations for the types of processes that our spacecraft have observed. Granular processes on Earth are incredibly complex and varied, and constitute an enormous field of study on their own, with input taken from across the broad disciplines of engineering and the physical sciences. In micro-gravity, additional forces, which on Earth are relevant only to micron-size particles or smaller, are expected to become important for material up to the size of large rocks, adding further complexity. The numerical tools developed in this work allow for the simulation of grains using an adaptation of the Soft-Sphere Discrete Element Method (SSDEM) along with implementations of cohesive forces between particles into an existing parallel gravity tree code.
机译:本论文的工作将行星科学和颗粒物理学的学科结合在一起。从数十亿年前的小行星形成到今天在地球的行星,卫星和小天体上发生的表面过程,谷物动力学在我们的太阳系演变过程中发挥了重要作用。太阳系小型天体的最新航天器图像提供了有力的证据,表明这些天体中的大多数都被白云母覆盖。这种re石的大小不一,从月球上发现的细粉到大型岩石和巨石,例如小型小行星伊藤川的27 m吉野台巨石。因此,在太阳系的固体上发生的过程会基于重碎石的材料特性及其表面上的引力环境而发生很大变化。对粒状动力学的理解对于航天器中要包括的着陆器,采样装置和流动站的设计和操作也至关重要。我的研究部分涉及数值工具的开发,这些工具能够为我们的航天器观测到的过程类型提供解释。地球上的颗粒过程异常复杂且变化多端,它们本身构成了一个巨大的研究领域,其输入来自工程和物理科学的广泛学科。在微重力作用下,预计地球上仅与微米级或更小尺寸颗粒有关的附加力对于材料的重要性将变得非常重要,直至达到大岩石的大小,这将进一步增加复杂性。在这项工作中开发的数值工具允许使用软球离散元素方法(SSDEM)以及对现有平行重力树代码中的粒子之间的内聚力的实现来模拟晶粒。

著录项

  • 作者

    Schwartz, Stephen Ross.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Physics Astrophysics.;Geology.;Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号