首页> 外文学位 >Impedance based sensing principles for microfluidic lab-on-a-chip systems: Application to cell volume assays.
【24h】

Impedance based sensing principles for microfluidic lab-on-a-chip systems: Application to cell volume assays.

机译:微流体芯片实验室系统基于阻抗的传感原理:应用于细胞体积测定。

获取原文
获取原文并翻译 | 示例

摘要

The rapidly developing field of lab-on-a-chip systems aims at combining various microfluidic components in the construction of fully functional, self-contained devices for robust, portable, large-scale integrated chemical and biological processing and analysis. To-date such devices have demonstrated applications in fundamental cellular and microbiology studies, analytical and combinatorial chemistry for drug discovery and high throughput screening, point-of-care and clinical diagnostics, genomics, proteomics as well as systems for detection of bio-warfare and chemical warfare agents.; Existing microfluidic components remain limited in their capabilities, ease of integration, and scope. This work aimed to expand the field by demonstrating innovative techniques that confer functionality without sacrificing simplicity and ease of integration in lab-on-a-chip systems. Impedance-based techniques were developed to monitor volume changes of a sensing element in a microfluidic channel; allowing detection of various useful parameters in a lab-chip. Two systems were designed, fabricated, and tested to demonstrate the principle. The first used an electrolytic bubble sensing element; which is a direct extension of bubble-based microfluidic technologies. The second system relied on biological cells as sensing elements in a microfluidic channel. As such, this work broadly evolved from impedance-based sensing techniques that can be used for closed-loop control of fluid handling components to robust applications in cell-based microfluidic assays.; In this thesis, device design considerations, fabrication techniques and characterization are presented. Fundamental studies of bubble growth, dynamics and configuration in a microchannel are described providing the basis for a bubble sensor which can detect effects of pressure and interfacial tension in a microfluidic system.; The significance and fundamental principles of cell volume are discussed followed by the development and characterization of a microfluidic cell volume sensor. Using primary rat astrocytes and E. coli, various applications of the sensor are demonstrated, including the ability to study cell volume regulation, screen bioactive reagents and the effects of pharmaceuticals on mammalian and bacterial cells.
机译:片上实验室系统的快速发展领域旨在将各种微流体组件结合在一起,以构建功能全面,自成一体的设备,以进行健壮,便携式,大规模的化学和生物集成处理和分析。迄今为止,此类设备已在基础细胞和微生物学研究,用于药物发现和高通量筛选的分析和组合化学,护理点和临床诊断,基因组学,蛋白质组学以及生物战和免疫系统检测中得到了应用。化学战剂。现有的微流体组件在其功能,易于集成和范围方面仍然受到限制。这项工作旨在通过展示在不牺牲简单性和易于集成在片上实验室系统中的功能的情况下,展示可提供功能的创新技术来扩展该领域。开发了基于阻抗的技术来监控微流体通道中传感元件的体积变化;允许检测实验室芯片中的各种有用参数。设计,制造和测试了两个系统以演示该原理。第一种使用电解气泡感测元件。这是基于气泡的微流体技术的直接扩展。第二个系统依靠生物细胞作为微流体通道中的传感元件。因此,这项工作从可用于流体处理组件的闭环控制的基于阻抗的传感技术广泛发展到了基于细胞的微流体分析中的稳健应用。本文提出了器件的设计考虑,制造技术和特性。描述了微通道中气泡生长,动力学和构造的基础研究,为气泡传感器提供了基础,该传感器可以检测微流体系统中压力和界面张力的影响。讨论了细胞体积的重要性和基本原理,然后讨论了微流体细胞体积传感器的开发和特性。使用原代大鼠星形胶质细胞和大肠杆菌,证明了传感器的各种应用,包括研究细胞体积调节,筛选生物活性试剂以及药物对哺乳动物和细菌细胞的作用的能力。

著录项

  • 作者

    Ateya, Daniel A.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Mechanical.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号