首页> 外文学位 >Effect of structural heat conduction on the performance of micro-combustors and micro-thrusters.
【24h】

Effect of structural heat conduction on the performance of micro-combustors and micro-thrusters.

机译:结构热传导对微型燃烧器和微型推进器性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

This thesis investigates the effect of gas-structure interaction on the design and performance of miniaturized combustors with characteristic dimensions less than a few millimeters. These are termed 'micro-combustors' and are intended for use in devices ranging from micro-scale rocket motors for micro, nano, and pico-satellite propulsion, to micro-scale engines for micro-Unmanned Air Vehicle (UAV) propulsion and compact power generation. Analytical models for the propagation of a premixed laminar flame in a micro-channel are developed. The models' predictions are compared to the results of more detailed numerical simulations that incorporate multi-step chemistry, distributed heat transfer between the reacting gas and the combustor structure, heat transfer between the combustor and the environment, and heat transfer within the combustor structure. The results of the modeling and simulation efforts are found to be in good qualitative agreement and demonstrate that the behavior of premixed laminar flames in micro-channels is governed by heat transfer within the combustor structure and heat loss to the environment.; The key findings of this work are as follows: First, heat transfer through the micro-combustor's structure tends to increase the flame speed and flame thickness. The increase in flame thickness with decreasing passage height suggests that micro-scale combustors will need to be longer than their conventional-scale counterparts. However, the increase in flame speed more than compensates for this effect and the net effect is that miniaturizing a combustor can increase its power density substantially. Second, miniaturizing chemical rocket thrusters can substantially increase thrust/weight ratio but comes at the price of reduced specific impulse (i.e. overall efficiency). Third, heat transfer through the combustor's structure increases steady-state and transient flame stability. This means that micro-scale combustors will be more stable than their conventional-scale counterparts. Fourth and finally, the extended temperature profile associated with the broadened flame causes a different set of elementary reactions to dominate the operation of the overall reaction mechanism at the micro-scale. This suggests that new chemical mechanisms may need to be developed in order to accurately simulate combustion at small-scales. It also calls into question the efficacy of single-step mechanisms presently used by other researchers.
机译:本文研究了气体-结构相互作用对特征尺寸小于几毫米的小型燃烧器的设计和性能的影响。这些被称为“微型燃烧器”,旨在用于从微型,纳米和微卫星驱动的微型火箭发动机到微型无人飞行器(UAV)推进和紧凑型微型发动机发电。建立了用于预混合层流火焰在微通道中传播的分析模型。将模型的预测与更详细的数值模拟结果进行比较,这些数值模拟包含多步化学过程,反应气体与燃烧器结构之间的分布式传热,燃烧器与环境之间的传热以及燃烧器结构内的传热。建模和仿真工作的结果在质量上吻合良好,表明预混层流火焰在微通道中的行为受燃烧器结构内的热传递和对环境的热损失控制。这项工作的主要发现如下:首先,通过微型燃烧器结构的热传递趋于增加火焰速度和火焰厚度。火焰厚度随通道高度的减小而增加,这表明微型燃烧器将需要比常规燃烧器更长的长度。然而,火焰速度的增加远远抵消了这种影响,并且净效果是使燃烧器小型化可以显着增加其功率密度。第二,小型化的化学火箭推进器可以大大增加推力/重量比,但代价是减小了比冲量(即总效率)。第三,通过燃烧器结构的热传递增加了稳态和瞬态火焰稳定性。这意味着微型燃烧器将比传统燃烧器更稳定。第四点也是最后一点,与扩大的火焰相关的扩展温度分布会导致一组不同的基本反应,从而在微观尺度上主导整个反应机理的运行。这表明可能需要开发新的化学机制,以精确地模拟小规模燃烧。这也使其他研究人员目前使用的单步机制的功效受到质疑。

著录项

  • 作者

    Leach, Timothy Thierry.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:42:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号