首页> 外文学位 >Inversion-Based Control Tools for High-Speed Precision Tracking/Transition in Emerging Applications.
【24h】

Inversion-Based Control Tools for High-Speed Precision Tracking/Transition in Emerging Applications.

机译:基于反相的控制工具,用于新兴应用中的高速精确跟踪/转换。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation work is motivated by the challenges in high-speed precision output tracking and transition in emerging applications, particularly for nonminimum-phase systems. Although fundamental performance limits to achieving precision output tracking with feedback control alone have been studied and quantified, for nonminimum-phase systems, exact output tracking cannot be achieved by using feedback control alone, due to the limits imposed by the nonminimum-phase zeros of the system. On the feedforward control side, the stable inversion theory solved the challenging output tracking problem and achieved exact tracking of a given desired output trajectory for nonminimum-phase systems (linear and nonlinear). The obtained solution, however, is noncausal and requires the entire desired trajectory to be known a priori. This noncausality constraint has been alleviated through the development of the preview-based inversion approach. Therefore, the stable-inversion framework provides an effective approach to output tracking of nonminimum-phase systems. Challenges, however, still exist in the existing stable-inversion theory for continuously more stringent control requirements. For example, the control problem of nonperiodic tracking-transition switching with preview for nonminimum-phase systems cannot be satisfactorily addressed by using the existing techniques. Another challenge in the existing stable-inversion approach is that as a feedforward control technique, it can be sensitive to the system dynamics uncertainties. Finally, the demanding online computation involved in the preview-based stable-inversion technique hinders the application of this approach in the presence of limited computation power. Therefore, these challenges, as magnified in applications of high-speed nano-manipulation and nano-fabrication, motivate the research work of this dissertation. First, the problem of nonperiodic tracking-transition switching with preview is considered. In the proposed preview-based optimal output tracking and transition (POOTT) approach, the optimal desired output trajectory for the transition sections is designed through direct minimization of the output energy, and the needed control input is obtained to maintain the smoothness of system state across all tracking-transition switching instants by using a preview-based stable-inversion approach. The needed preview time is quantified, and the recently-developed optimal preview-based inversion approach is also incorporated to minimize the amount of preview time. Secondly, a B-spline-decomposition (BSD)-based approach to output tracking with preview is developed for nonminimum-phase systems, that not only substantially reduces the dynamics uncertainty effect on tracking performance, but also minimizes the online demanding computation. The BSD approach is illustrated through simulation study of a nanomanipulation application using a nonminimum-phase piezo actuator model, and then further demonstrated by a 2D nanomanipulation in experiments using AFM. Finally, a multi-axis inversion-based iterative control (MAIIC) approach is developed to compensate for the dynamics coupling in multi-axis motion during high-speed nanofabrication. By using this advanced control technique, precision position control of the probe with respect to the sample substrate can be achieved during highspeed, large-range multi-axis nanofabrication. Particularly, the cross-axis dynamics coupling effect on the output tracking can be compensated for during the iterative learning process with no additional steps to learn the cross-coupling effect separately. The MAIIC approach is illustrated through experiments by implementing it to fabricate two Chinese characters pattern via mechanical scratching on a gold-coated silicon sample surface at high speed. The research work of this dissertation addresses the limits and further extends the inversion-based control techniques for high-speed precision tracking/transition in emerging applications, particularly, the challenges involved in output tracking with non-periodic tracking-transition switching, accounting for dynamics uncertainty and demanding computation requirements for nonminimum-phase systems, and cross-axis coupling in high-speed multi-axis motion. The experimental part of the work demonstrates and illustrates the efficacy of the proposed control techniques.
机译:本论文的工作是受新兴应用(尤其是非最小相位系统)中高速精密输出跟踪和转换所面临挑战的推动。尽管已经研究和量化了仅通过反馈控制来实现精确输出跟踪的基本性能极限,但对于非最小相位系统,由于单独的反馈控制的非最小相位零所带来的限制,无法仅通过使用反馈控制来实现精确的输出跟踪。系统。在前馈控制方面,稳定反演理论解决了具有挑战性的输出跟踪问题,并实现了对非最小相位系统(线性和非线性)的给定所需输出轨迹的精确跟踪。然而,所获得的解决方案不是无因的,并且需要先验地知道整个期望的轨迹。通过基于预览的反演方法的开发,减轻了这种非因果性约束。因此,稳定反框架为非最小相位系统的输出跟踪提供了一种有效的方法。然而,对于持续更严格的控制要求,现有的稳定反转理论仍然存在挑战。例如,通过使用现有技术不能令人满意地解决非最小相位系统的具有预览的非周期性跟踪过渡转换的控制问题。现有稳定反转方法的另一个挑战是,作为前馈控制技术,它可能对系统动力学的不确定性敏感。最后,基于预览的稳定反演技术所要求的在线计算阻碍了这种方法在有限计算能力下的应用。因此,这些挑战,在高速纳米加工和纳米加工的应用中被放大,从而激发了本论文的研究工作。首先,考虑具有预览的非周期性跟踪-过渡切换的问题。在建议的基于预览的最佳输出跟踪和过渡(POOTT)方法中,通过直接最小化输出能量来设计过渡部分的最佳期望输出轨迹,并获得所需的控制输入以保持系统状态在整个系统中的平滑性通过使用基于预览的稳定反转方法,可以跟踪所有跟踪转换的瞬间。量化了所需的预览时间,并且还采用了最近开发的基于预览的最佳优化反转方法,以最大程度地减少预览时间。其次,针对非最小相位系统,开发了一种基于B样条分解(BSD)的带预览输出跟踪的方法,该方法不仅可以大大降低动力学不确定性对跟踪性能的影响,而且还可以最小化在线需求的计算。通过使用非最小相位压电执行器模型的纳米操纵应用的仿真研究,说明了BSD方法,然后在使用AFM的实验中通过二维纳米操纵进一步证明了BSD方法。最后,开发了一种基于多轴反转的迭代控制(MAIIC)方法,以补偿高速纳米加工过程中多轴运动中的动力学耦合。通过使用这种先进的控制技术,可以在高速,大范围的多轴纳米加工过程中实现探针相对于样品基板的精确位置控制。特别是,在迭代学习过程中,可以补偿跨轴动态耦合对输出跟踪的影响,而无需额外的步骤来单独学习跨耦合效应。通过实验对MAIIC方法进行了说明,方法是将其实现为通过机械刮擦在镀金的硅样品表面上高速加工两个汉字图案的方法。本文的研究工作解决了这一局限性,并进一步扩展了基于反转的控制技术在新兴应用中的高速精确跟踪/转换,特别是涉及非动态跟踪-转换切换的输出跟踪所涉及的挑战,并考虑了动力学问题。非最小相位系统的不确定性和苛刻的计算要求,以及高速多轴运动中的横轴耦合。这项工作的实验部分演示并说明了所提出的控制技术的功效。

著录项

  • 作者

    Wang, Haiming.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Mechanical.;Engineering System Science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号