首页> 外文学位 >The Diffusiophoretic Motion of Colloids
【24h】

The Diffusiophoretic Motion of Colloids

机译:胶体的发汗运动

获取原文
获取原文并翻译 | 示例

摘要

Microbots and nanobots are self-locomoting objects intended to move through liquids along a programmed path in small-scale landscapes to facilitate novel applications such as targeted drug delivery to individual cells and shuttles for moving cargo through microfluidic domains. Phoretic mechanisms have long been constructed using a top-down approach to colloid locomotion, however in this work we study a bottom-up approach based on a chemo-mechanical transduction mechanism, diffusiophoresis. In this case, motion results from unbalanced molecular forces exerted on a colloid particle by solute molecules distributed asymmetrically around it. In (passive) rectified diffusiophoresis, the concentration gradient is applied externally whereas in (active) self -diffusiophoresis, the concentration gradient is sustained by a surface reaction with a solute on one face of colloid. A key issue in applications as technology turns to nano-scales is to understand the dependence of the propulsion velocity on the various parameters controlling colloids motion. We have undertaken both continuum and molecular dynamics (MD) simulations in order to obtain insight into these sub-micron colloid propulsion schemes. From continuum framework, in self-diffusiophoretic motion of a colloid in an infinite medium, we have first examined the effects of reaction rate, solute advection and the particle size on the colloid swimming velocity. Furthermore, we extended our analysis for the colloid self-propulsion in presence of geometrical constraints and we particularly investigated the solid plane wall effect and also pair active colloids interactions. Although the continuum approach provides a complete solution to the governing equations of motion at micron and larger length scales, but the correct incorporation of molecular interactions requires an unspecified molecular cutoff. The MD approach provides a self consistent account of all interacting atomic species at nano-scales. We show that these MD simulations establish a cutoff for the interaction potential in the continuum theory allowing the continuum and MD to be in full agreement. We are thus able to predict the motion of colloids from nanometers to microns.
机译:微型机器人和纳米机器人是自我定位的物体,旨在沿着小规模景观中的程序路径在液体中移动,以促进新颖的应用,例如将药物定向递送到单个细胞和用于将货物移动通过微流域的航天飞机。长期以来,一直采用自上而下的方法来胶体运动来构建光致机理,但是在这项工作中,我们研究了基于化学机械转导机制,扩散电泳的自下而上的方法。在这种情况下,运动是由不对称分布在胶体颗粒周围的溶质分子在胶体颗粒上施加的不平衡分子力导致的。在(被动)整流扩散电泳中,浓度梯度是从外部施加的,而在(主动)自扩散电泳中,浓度梯度是通过与胶体一面上的溶质发生表面反应而维持的。随着技术向纳米尺度发展,应用中的关键问题是了解推进速度对控制胶体运动的各种参数的依赖性。为了获得对这些亚微米胶体推进方案的深入了解,我们进行了连续谱和分子动力学(MD)模拟。从连续体框架来看,在无限介质中胶体的自扩散电泳运动中,我们首先研究了反应速率,溶质平流和粒径对胶体游泳速度的影响。此外,我们在存在几何约束的情况下扩展了对胶体自我推进的分析,并特别研究了固体平面壁效应以及配对的活性胶体相互作用。尽管连续方法为微米级和更大长度尺度上的运动控制方程提供了完整的解决方案,但是正确结合分子相互作用需要未指定的分子截止。 MD方法对纳米级所有相互作用的原子种类提供了一个自洽的解释。我们表明,这些MD模拟为连续体理论中的相互作用潜力建立了一个界限,使连续体和MD完全一致。因此,我们能够预测胶体从纳米到微米的运动。

著录项

  • 作者

    Sharifi Mood, Nima.;

  • 作者单位

    The City College of New York.;

  • 授予单位 The City College of New York.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号