首页> 外文学位 >Design and Simulation of Single-Electron Molecular Devices.
【24h】

Design and Simulation of Single-Electron Molecular Devices.

机译:单电子分子器件的设计与仿真。

获取原文
获取原文并翻译 | 示例

摘要

This work presents a study of molecular single-electron devices that may be used as the basic building blocks in high-density resistive memories and hybrid CMOS/nanoelectronic integrated circuits. It was focused on the design and simulation of a molecular two-terminal nonvolatile resistive switch based on a system of two linear, parallel, electrostatically-coupled molecules: one implementing a single electron transistor and another serving as a single-electron trap. To verify the design, a theoretical analysis of this "memristive" device has been carried out, based on a combination of ab-initio calculations of the electronic structures of the molecules, Bardeen's approximation for the rate of tunneling due to wavefunction overlap between source/drain electrodes and the molecular device, and the general theory of single-electron tunneling in systems with discrete energy spectra. The results show that such molecular assemblies, with a length below 10 nm and a footprint area of about 5 nm2, may combine sub-second switching times with multi-year retention times and high (> 103) ON/OFF current ratios, at room temperature. Moreover, Monte Carlo simulations of self-assembled monolayers (SAM) based on such molecular assemblies have shown that such monolayers may also be used as resistive switches, with comparable characteristics and, in addition, be highly tolerant to defects and stray offset charges. An important and unexpected finding in this work is that the simulated I-V curves in a few molecular junctions exhibit negative differential resistance (NDR) with the origin so fundamental, that the effect should be observed in most molecular junctions where the sequential single-electron transfer limit is valid. Another important by-product of this work is a more complete understanding of some shortcomings of the existing density functional theory approximations, including their advanced versions such as the ASIC method.
机译:这项工作提出了对分子单电子器件的研究,该器件可用作高密度电阻式存储器和CMOS /纳米电子集成电路的基础。它专注于基于两个线性,并联,静电耦合分子的系统的分子两端非挥发性电阻式开关的设计和仿真:一个实现单个电子晶体管,另一个实现单电子陷阱。为了验证设计,已对该分子的“忆阻”器件进行了理论分析,结合了分子电子结构的从头算式,Bardeen近似计算了由于源/源之间的波函数重叠而引起的隧穿速率。漏电极和分子器件,以及具有离散能谱的系统中单电子隧穿的一般理论。结果表明,这种分子组件的长度小于10 nm,占地面积约为5 nm2,在室温下可以将亚秒级的开关时间与多年的保留时间和高(> 103)ON / OFF电流比结合在一起温度。此外,基于此类分子组装的自组装单分子层(SAM)的蒙特卡洛模拟表明,此类单分子层也可以用作电阻开关,具有可比的特性,并且还高度耐受缺陷和杂散偏移电荷。这项工作中的一个重要且出乎意料的发现是,在几个分子结中模拟的IV曲线显示出负的微分电阻(NDR),其起源如此基本,以至于在大多数分子结中出现了单电子转移极限的影响,已验证。这项工作的另一个重要副产品是对现有密度泛函理论近似的一些缺点,包括它们的高级版本(例如ASIC方法),有更完整的理解。

著录项

  • 作者

    Simonian, Nikita.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Physics General.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号