首页> 外文学位 >In-Plane Nanofluidic Devices: Fabrication, Ion Transport, and Circuits.
【24h】

In-Plane Nanofluidic Devices: Fabrication, Ion Transport, and Circuits.

机译:平面内纳米流体设备:制造,离子传输和电路。

获取原文
获取原文并翻译 | 示例

摘要

Nanoscale fabrication techniques are able to produce sophisticated nanofluidic devices that have tremendous potential as analytical instruments. Ion transport properties in these devices are easily manipulated by proper selection of the channel dimensions, channel geometry, and applied potential, and consequently, phenomena such as ion current rectification, surface charge, double-layer overlap, and entropy lead to ion enrichment, depletion, and separation. By fabricating devices in plane, we are able to create fluidic circuits with any two-dimensional architecture that have a variety of nano- and microscale elements coupled in series, parallel, or both. Moreover, in-plane devices enable simultaneous electrical and optical characterization to better understand transport phenomena.;In this work, we developed in-plane fabrication techniques to produce nanofluidic devices with asymmetric channels, e.g., funnels, and studied ion transport behavior through them. These nanoscale funnels were cast in high-modulus poly(dimethylsiloxane) (h-PDMS) on SU-8 masters formed by electron beam lithography. We also shaped the SU-8 masters by electron beam induced etching with water as a precursor gas to create nanochannels with three-dimensional topography. The tip shape, taper angle, and length of individual funnels and their relative orientation within a nanofluidic circuit were systematically examined by conductivity and fluorescence measurements. Longer nanofunnels with smaller taper angles rectified ion current to a greater extent than shorter funnels with larger taper angles. Current rectification systematically increased when one, two, three, and four funnels were stacked in series. To mimic a logic circuit and demonstrate an AND function, we designed a device with two of these stacked funnels as parallel inputs and a single straight nanochannel as an output. Similarly, a circuit with transistor-like behavior was formed from three funnels connected to a common microchannel. In both circuit designs, the observed ion transport, enrichment, and depletion were controlled by the relative orientation of the funnels and applied potentials. Our work shows that complex nanofluidic architectures can be designed and fabricated to exploit electrokinetic processes at the nanoscale.
机译:纳米级制造技术能够生产具有巨大潜力的复杂纳米流体装置,作为分析仪器。通过适当选择通道尺寸,通道几何形状和施加电势,可以轻松地控制这些设备中的离子传输特性,因此,诸如离子电流整流,表面电荷,双层重叠和熵之类的现象会导致离子富集,耗尽和分离。通过在平面上制造设备,我们能够创建具有任何二维结构的流体回路,该流体回路具有串联,并联或同时串联的多种纳米和微米级元素。此外,平面装置可同时进行电学和光学表征,以更好地了解传输现象。;在这项工作中,我们开发了平面制造技术以生产具有不对称通道(例如漏斗)的纳米流体器件,并研究了通过它们的离子传输行为。将这些纳米级漏斗浇铸在通过电子束光刻形成的SU-8母版上的高模量聚二甲基硅氧烷(h-PDMS)中。我们还通过以水为前驱体气体以水为电子束感应蚀刻来塑造SU-8母版,以创建具有三维形貌的纳米通道。通过电导率和荧光测量系统地检查了尖端形状,锥角和单个漏斗的长度以及它们在纳米流体回路中的相对取向。具有较小锥角的较长漏斗比具有较大锥角的较短漏斗对离子电流的整流程度更大。当一个,两个,三个和四个漏斗串联堆放时,电流整流系统地增加。为了模拟逻辑电路并演示“与”功能,我们设计了一种器件,其中两个堆叠漏斗作为并行输入,而单个直纳米通道作为输出。类似地,由连接到公共微通道的三个漏斗形成具有类似晶体管行为的电路。在这两种电路设计中,观察到的离子迁移,富集和耗尽都由漏斗的相对方向和施加的电势控制。我们的工作表明,可以设计和制造复杂的纳米流体体系结构,以利用纳米级的电动过程。

著录项

  • 作者

    Perry, John.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号