首页> 外文学位 >Colloidal Nanocrystal Quantum Dots for High-Efficiency Optoelectronic Conversions.
【24h】

Colloidal Nanocrystal Quantum Dots for High-Efficiency Optoelectronic Conversions.

机译:用于高效光电转换的胶体纳米晶体量子点。

获取原文
获取原文并翻译 | 示例

摘要

Monodispersed colloidal quantum dots (QDs) synthesized by low-cost solution methods have many attractive properties, including high wavelength tunability, efficient luminescence, narrow emission bandwidth, and strong broadband absorption. They therefore offer a new class of materials for efficient optoelectronic conversions in various devices, including light-emitting diodes (LEDs), photodetectors, and thin-film solar cells. Despite the recent rapid progress, the development of QD-based devices is still in its infancy. For instance, both the external quantum efficiency of QD-LEDs and power conversion efficiency of QD solar cells reported in the literature are only a few percent, far below those of state-of-the- art inorganic and organic semiconductor devices. The performance of QD-based devices is largely limited by the insulating and bulky organic ligands of QDs, which are necessary for colloidal synthesis, but create large interparticle spacing and interfacial energy barriers, impeding charge transport and injection as well as exciton dissociation and energy transfer.;This work aims to enhance the energy conversion efficiencies in QD-based optoelectronic devices through surface modification of QDs and device structure optimization, which can enable efficient electronic coupling and energy transfer between QDs and surrounding materials. First, an in-house capability of colloidal QD synthesis by the hot-injection method was developed. High-quality CdSe, CdS and CdTe core QDs with sharp excitonic absorption features and narrow PL bandwidths were synthesized. Growing a ZnS shell surrounding the CdSe core QDs via the SILAR method increased the photoluminescence quantum yield (PL QY) from 10% to ∼50%. Furthermore, the ZnS shell was replaced by a graded CdS/Zn0.5Cd0.5S/ZnS multishell, leading to reduced interfacial defects and an improved PL QY ∼65%. Second, CdSe and CdSe/ZnS QDs with inorganic metal chalcogenide ligands (SnS4 4-) were synthesized by an organic-to-inorganic ligand exchange process. The SnS4 ligands significantly enhanced the inter-QD electronic coupling in QD solids, but caused a substantial reduction in the PL efficiency. Finally, the applicability of CdSe QDs with organic and inorganic ligands for optoelectronic applications is evaluated through detailed optical, electrical and optoelectronic characterization. LEDs based on a QDs/organic materials hybrid structure were fabricated and characterized. The best result was obtained from the LEDs based on organically-capped CdSe/ZnS QDs with a layer of blue phosphorescent FIrpic dyes as efficient exciton harvesters and energy donors. Precise control of the concentration of the donors and their distance from the QD layer led to complete exciton energy transfer and efficiency enhancement by a factor of 2.5. Meanwhile, the SnS4-capped QDs were found to retain strong excitonic absorption. Under a 150 W Xe lamp illumination, the photocurrent response of an ITO/QDs/Al structure increased by several orders of magnitude after the ligand exchange. These findings bode well for the applicability of colloidal QDs with metal chalcogenide ligands to efficient energy conversion in low-cost thin-film solar cells.
机译:通过低成本溶液法合成的单分散胶体量子点(QD)具有许多吸引人的特性,包括高波长可调性,高效发光,窄发射带宽和强宽带吸收性。因此,它们为在各种器件中进行有效的光电转换提供了新型材料,包括发光二极管(LED),光电探测器和薄膜太阳能电池。尽管最近进展很快,但是基于QD的设备的开发仍处于起步阶段。例如,文献中报道的QD-LED的外部量子效率和QD太阳能电池的功率转换效率都只有百分之几,远低于最新的无机和有机半导体器件。基于量子点的器件的性能在很大程度上受到量子点绝缘和庞大的有机配体的限制,量子点对于胶体合成是必不可少的,但会产生较大的粒子间距和界面能垒,阻碍电荷传输和注入以及激子离解和能量转移。;这项工作旨在通过对QD进行表面修饰和优化器件结构来提高基于QD的光电器件的能量转换效率,从而可以实现QD与周围材料之间的高效电子耦合和能量转移。首先,开发了通过热注射法合成胶体量子点的内部能力。合成了具有清晰的激子吸收特征和窄PL带宽的高质量CdSe,CdS和CdTe核心量子点。通过SILAR方法在CdSe核心QD周围生长ZnS壳层,可将光致发光量子产率(PL QY)从10%提高至〜50%。此外,ZnS外壳被渐变的CdS / Zn0.5Cd0.5S / ZnS多层外壳所替代,从而减少了界面缺陷并提高了PL QY〜65%。其次,通过有机-无机配体交换过程合成了具有无机金属硫属元素配体(SnS4 4-)的CdSe和CdSe / ZnS QD。 SnS4配体显着增强了QD固体中的QD间电子耦合,但导致PL效率大大降低。最后,通过详细的光学,电气和光电特性评估,评估了CdSe量子点与有机和无机配体在光电应用中的适用性。制备并表征了基于量子点/有机材料混合结构的LED。从基于有机封端的CdSe / ZnS QD的LED获得了最好的结果,该LED带有一层蓝色磷光FIrpic染料作为有效的激子收集器和能量供体。精确控制施主的浓度及其与QD层的距离导致了激子能量的完全转移,效率提高了2.5倍。同时,发现SnS4封端的QD保留了强烈的激子吸收。在150 W Xe灯照明下,配体交换后,ITO / QDs / Al结构的光电流响应增加了几个数量级。这些发现预示着具有金属硫族化物配体的胶体量子点在低成本薄膜太阳能电池中对有效能量转换的适用性。

著录项

  • 作者

    Zhang, Yiqiang.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号