首页> 外文学位 >Mesoscale simulation of the photoresist process and hydrogel biosensor array platform indexed by shape.
【24h】

Mesoscale simulation of the photoresist process and hydrogel biosensor array platform indexed by shape.

机译:光刻胶工艺的中尺度模拟和按形状索引的水凝胶生物传感器阵列平台。

获取原文
获取原文并翻译 | 示例

摘要

Advances in microlithography have driven the rapid progression of semiconductor technology. However, the number and complexity of issues facing microlithography engineers have also increased significantly. Today, it is neither time nor cost-efficient to run large optimization experiment matrices. Instead, simulators are used to explore the huge process space, so that only small, fine-tuning experiments are necessary. Current commercial simulators make use of empirically derived continuum models. This approach has many advantages, especially computation speed, but it is not without limitations. The predictive power of empirically fit models is severely limited outside the input parameter range and stochastic processes such as shot noise and acid diffusion are not considered. These limitations make it difficult to simulate and diagnose molecular-scale effects such as line edge roughness (LER) that are becoming significant problems. To address these issues, a first-principles "mesoscale" photoresist simulator was devised by past researchers, and further developed by the author. A base quencher model was added to help elucidate the effects of base on LER. Quantum mechanical estimation techniques were used to calculate more accurate interaction energies; these calculations led to aggregation of photoacid generator molecules in the photoresist, which was quantified. A serious limitation of mesoscale simulation is relatively long computation times. Thus, several efforts were made to improve the speed of the models.; The advances of the biochemistry and semiconductor fields in the 1980s led to the development of biochips in the 1990s. These devices enable rapid and simultaneous screening of a large number of biological analytes in a compact space, for a variety of applications. Cancer diagnosis through DNA typing, public water systems testing, and airline cargo screening are just a few of the active biochip research areas. To achieve these ends, DNA, RNA, proteins, and even living cells are being employed as sensing mediators. However, current microarray fabrication techniques are either too expensive or too limiting to achieve usage outside of specialized settings. The limitations of current biochip platforms led the author and colleagues to develop an alternative system using lithographically produced hydrogel biosensors. Hydrogel sensors ("MUFFINS") were made that use their shape to index chemical and biological function. This platform utilizes self-assembly and pattern recognition techniques to create compact, computer-readable sensor arrays.
机译:微光刻技术的发展推动了半导体技术的飞速发展。但是,微光刻工程师面临的问题的数量和复杂性也大大增加了。如今,运行大型优化实验矩阵既不节省时间,也不具有成本效益。取而代之的是,使用模拟器来探索巨大的过程空间,因此仅需进行细微的微调实验。当前的商业模拟器利用根据经验得出的连续体模型。这种方法有很多优点,特别是计算速度快,但并非没有限制。经验拟合模型的预测能力被严格限制在输入参数范围之外,并且不考虑诸如散粒噪声和酸扩散之类的随机过程。这些局限性使得难以模拟和诊断正在成为严重问题的分子尺度效应,例如线边缘粗糙度(LER)。为了解决这些问题,过去的研究人员设计了第一原理的“中尺度”光刻胶模拟器,并由作者进一步开发。添加了基本淬灭剂模型以帮助阐明碱基对LER的影响。量子力学估计技术被用来计算更准确的相互作用能。这些计算导致了光致产酸剂分子在光刻胶中的聚集,对此进行了量化。中尺度模拟的一个严重限制是相对较长的计算时间。因此,为提高模型速度做出了一些努力。 1980年代生物化学和半导体领域的进步导致了1990年代生物芯片的发展。这些设备可在紧凑的空间中快速,同时筛选大量生物分析物,以用于各种应用。通过DNA分型,公共水系统测试和航空货物筛选进行的癌症诊断只是活跃的生物芯片研究领域中的一些。为了达到这些目的,DNA,RNA,蛋白质甚至活细胞都被用作传感介体。但是,当前的微阵列制造技术要么太昂贵要么太局限,以致于无法在专门设置之外使用。当前生物芯片平台的局限性导致作者和同事使用光刻生产的水凝胶生物传感器开发了另一种系统。制备了水凝胶传感器(“ MUFFINS”),其形状可用于指示化学和生物学功能。该平台利用自组装和模式识别技术来创建紧凑的计算机可读传感器阵列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号