首页> 外文期刊>Faraday discussions >Functionalised microscale nanoband edge electrode (MNEE) arrays: the systematic quantitative study of hydrogels grown on nanoelectrode biosensor arrays for enhanced sensing in biological media
【24h】

Functionalised microscale nanoband edge electrode (MNEE) arrays: the systematic quantitative study of hydrogels grown on nanoelectrode biosensor arrays for enhanced sensing in biological media

机译:官能化的微观纳米乐队边缘电极(MNEE)阵列:在纳米电极生物传感器阵列上生长的水凝胶的系统定量研究,以增强生物介质的感测

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoelectrodes and nanoelectrode arrays show enhanced diffusion and greater faradaic current densities and signal-to-noise ratios compared to macro and microelectrodes, which can lead to enhanced sensing and detection. One example is the microsquare nanoband edge electrode (MNEE) array system, readily formed through microfabrication and whose quantitative response has been established electroanalytically. Hydrogels have been shown to have applications in drug delivery, tissue engineering, and anti-biofouling; some also have the ability to be grown electrochemically. Here, we combine these two emerging technologies to demonstrate the principles of a hydrogel-coated nanoelectrode array biosensor that is resistant to biofouling. We first electrochemically grow and analyze hydrogels on MNEE arrays. The structure of these gels is shown by imaging to be electrochemically controllable, reproducible and structurally hierarchical. This structure is determined by the MNEE array diffusion fields, consistent with the established hydrogel formation reaction, and varies in structural scale from nano (early time, near electrode growth) to micro (for isolated elements in the array) to macro (when there is array overlap) with distance from the electrode, forming a hydrogel mesh of increasing density on progression from solution to electrode. There is also increased hydrogel structural density observed at electrode corners, attributable to enhanced diffusion. The resulting hydrogel structure can be formed on (and is firmly anchored to/through) an established clinically relevant biosensing layer without compromising detection. It is also shown to be capable, through proof-of-principle model protein studies using bovine serum albumin (BSA), of preventing protein biofouling whilst enabling smaller molecules such as DNA to pass through the hydrogel matrix and be sensed. Together, this demonstrates a method for developing reproducible, quantitative electrochemical nanoelectrode biosensors able to sense selectively in real-world sample matrices through the tuning of their interfacial properties.
机译:与宏观和微电极相比,纳米电极和纳米电极阵列显示出增强的扩散和更大的游览电流密度和信噪比,这可能导致感测和检测增强。一个例子是微孔纳米南欧边缘电极(MNEE)阵列系统,通过微型制备容易地形成,并且其定量响应已经在电分析建立。已显示水凝胶具有药物递送,组织工程和抗生物污染的应用;有些人还具有电化学生长的能力。在这里,我们将这两个新兴技术结合起来证明水凝胶涂覆的纳米电极阵列生物传感器的原理,其抵抗生物污染。我们首先在MNEE阵列上电化学生长和分析水凝胶。通过成像以电化学控制,可重复和结构分层的成像示出了这些凝胶的结构。该结构由MNEE阵列扩散场决定,与已建立的水凝胶形成反应一致,并且在从纳米(早期,近时,近的电极生长)到微观(阵列中的分离元素)的结构等级变化到宏(当有)阵列重叠),距离电极的距离,形成从溶液到电极的进展的增加密度的水凝胶网。在电极角下观察到水凝胶结构密度增加,可归因于增强的扩散。所得到的水凝胶结构可以形成(并且牢固地锚固到/通过)建立的临床相关的生物传感层而不损害检测。通过使用牛血清白蛋白(BSA)的原理模型研究,它也能够能够进行能力,以防止蛋白质生物膨胀,同时使较小的分子如DNA通过水凝胶基质并被感测。这在一起,通过调整它们的界面性质,表明一种开发可再现的定量电化学纳米电极生物传感器,其能够在真实的样本矩阵中选择性地感知。

著录项

  • 来源
    《Faraday discussions》 |2018年第2018期|共17页
  • 作者单位

    Univ Edinburgh Sch Chem EaSTCHEM Joseph Black Bldg Kings Bldg David Brewster Rd Edinburgh EH9 3FJ Midlothian Scotland;

    Univ Liverpool Dept Chem Crown St Liverpool L69 7ZD Merseyside England;

    Univ Liverpool Dept Chem Crown St Liverpool L69 7ZD Merseyside England;

    Univ Edinburgh Sch Chem EaSTCHEM Joseph Black Bldg Kings Bldg David Brewster Rd Edinburgh EH9 3FJ Midlothian Scotland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号