首页> 外文学位 >Models for rapid assessment of leadless component failures during printed wiring board bending.
【24h】

Models for rapid assessment of leadless component failures during printed wiring board bending.

机译:用于快速评估印刷线路板弯曲过程中无铅组件故障的模型。

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of leadless ceramic chip components has caused their failure to become a critical issue in the electronics industry. The majority of these failures are due to mechanical loads applied to the printed wiring board during assembly. The intentions of this dissertation are to demonstrate the relationship between printed wiring board flexure and the failure of leadless ceramic chip components and to develop a methodology for rapidly assessing the risk of these types of failures. To achieve this objective, closed form structural engineering based equations have been developed for calculating the loads at the critical location within the surface mount package when the underlying printed wiring board is subjected to bending. These loads are then used to calculate the stresses in the component. Validation of these stress results was done by comparing them to those of finite element models. Failure predictions using these stresses and a probabilistic failure model were then made and compared to published experimental results. The developed methodology was then physically validated with mechanical testing and field case studies. This research identifies the physical mechanism that initiates failure in ceramic bodies attached to a glass fiber/epoxy matrix composite in a non-compliant manner, assesses the response of the mechanism to various geometries and mechanical loading conditions, and develops an analytical model that allows the user to assess risk during the design phase and to determine the root cause of field failures.
机译:无铅陶瓷芯片组件的激增已经导致其失败成为电子行业的关键问题。这些故障中的大多数是由于组装期间施加到印刷线路板上的机械负载所致。本文的目的是证明印刷线路板的弯曲度与无铅陶瓷芯片组件的故障之间的关系,并开发一种可以快速评估此类故障风险的方法。为了实现该目的,已经开发了基于封闭形式结构工程的方程式,用于当下面的印刷电路板受到弯曲时计算表面安装封装内关键位置的载荷。然后将这些载荷用于计算组件中的应力。这些应力结果的验证是通过将它们与有限元模型的结果进行比较来完成的。然后使用这些应力和概率失效模型进行失效预测,并将其与已发布的实验结果进行比较。然后,通过机械测试和现场案例研究对开发的方法进行物理验证。这项研究确定了物理机制,该机制以非顺应性方式引发了附着在玻璃纤维/环氧树脂基复合材料上的陶瓷体的破坏,评估了该机制对各种几何形状和机械负载条件的响应,并开发了一种分析模型,从而可以用户可以在设计阶段评估风险并确定现场故障的根本原因。

著录项

  • 作者

    Blattau, Nathan John.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Mechanical.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号