首页> 外文学位 >Surface science and engineering of reduced graphene oxide for graphene-based nano-electronics and ultracapacitors.
【24h】

Surface science and engineering of reduced graphene oxide for graphene-based nano-electronics and ultracapacitors.

机译:用于石墨烯基纳米电子和超级电容器的还原氧化石墨烯的表面科学和工程。

获取原文
获取原文并翻译 | 示例

摘要

Graphene is a sp2-hybridized carbon nanosheet with delocalized benzene rings that has unique electrical, optical and mechanical properties. A major driving force for its large area production, high scalability and high volume manufacturability is necessary for its use in industrial applications. Graphene is therefore a promising nano material because of its possible implementation for nano electronics for scaling down the transistors. Therefore, wet processes are necessary for sustainable manufacturing, handling and shaping these sheets in nano scales. For this purpose, understanding graphene sheets in solution environment with direct contact to liquids is tremendously significant since its chemical modification is necessary to derive graphene or graphite into desirable nanostructures to mimic their outstanding properties with a good control of chemistry. Changes in surface or edge interactions result in modified graphene sheets (modified via wet chemistry, thermal processing or combination of both from reduction of graphite or graphene oxide) that are different in terms of their physical and chemical properties. Once many layers are present within different thicknesses, interlayer interactions are intact between the layers or closer to the edges that vary its edge properties. Although the presence of defects in pure graphene is unwanted, defects to certain extents may be also desirable for modified graphene sheets that can easily tailor its surface and edge properties. Therefore, both evaluation of sheet interactions in the presence of oxygen and understanding the oxygen interactions at the sheet edges, within the defective sites, between the sheets and at the interlayers is of main scope of this dissertation. For this purpose, in-situ infrared spectroscopy technique is studied with thermal annealing and supported by other characterization techniques such as x-ray photoelectron spectroscopy, x-ray diffraction, optical microscopy, atomic force microscopy and thermal gravimetric analyses. Apart from these experimental methods, theoretical calculations such as density functional theory simulations are also provided for mechanistic details of the experimental findings.
机译:石墨烯是具有离域苯环的sp2杂化碳纳米片,具有独特的电,光和机械性能。其大面积生产,高可扩展性和大批量可制造性的主要驱动力对于其在工业应用中的使用是必需的。石墨烯因此是有前途的纳米材料,因为它可以用于纳米电子器件以缩小晶体管的尺寸。因此,湿法工艺对于可持续制造,处理和整形这些纳米尺寸的薄片是必需的。为此,在溶液环境中与液体直接接触的理解石墨烯片具有极其重要的意义,因为必须对其进行化学修饰,才能将石墨烯或石墨衍生为所需的纳米结构,以通过良好的化学控制来模仿其出色的性能。表面或边缘相互作用的变化会导致改性石墨烯片材(通过湿化学,热处理或石墨或氧化石墨烯还原的组合进行改性)在物理和化学性质方面不同。一旦许多层以不同的厚度存在,层之间的相互作用将保持不变,或者更靠近边缘,从而改变其边缘属性。尽管纯石墨烯中缺陷的存在是不希望有的,但对于可以轻松调整其表面和边缘性能的改性石墨烯片材,在某种程度上也可能需要缺陷。因此,评估在有氧存在下的薄板相互作用以及了解在薄板边缘,缺陷部位内,薄板之间和中间层处的薄板边缘处的氧气相互作用都是本论文的主要范围。为此,对原位红外光谱技术进行了热退火研究,并得到了其他表征技术的支持,例如x射线光电子能谱,x射线衍射,光学显微镜,原子力显微镜和热重分析。除了这些实验方法之外,还提供了诸如密度泛函理论模拟之类的理论计算,以提供实验发现的机械细节。

著录项

  • 作者

    Acik, Muge.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号