首页> 外文学位 >Nanoparticles as signal reporters in biotechnology.
【24h】

Nanoparticles as signal reporters in biotechnology.

机译:纳米粒子是生物技术中的信号报告物。

获取原文
获取原文并翻译 | 示例

摘要

There is a growing interest in hybrid assemblies of nanoparticles and biomolecules for detection, biological imaging, signal reporting and targeted drug delivery. Nanoparticles are used in such broad applications due to their unique properties such as ease of preparation, ease of surface functionalization, biocompatibility, and ease of mobility in cells. Use of metal nanoparticles requires the control of size which is a crucial factor in determining the biological responses and optical properties of nanoparticles. In this study, a relation between size of nanoparticles and their surface plasmon resonance peak was obtained using UV-vis spectroscopy, transmission electron microscopy and light scattering techniques. Due to its high selectivity, surface enhanced Raman spectroscopy (SERS) has been widely used for the detection of biomolecules and study of their conformation on metal surfaces. To be able to get the most intense Raman signals, the factors affecting surface enhanced Raman intensity such as nanoparticle size, pH, and solution suspension time have been studied. The optimum conditions which will give rise to intense Raman signals have been obtained.;While nanoparticles have useful applications in medical research, their use needs to be monitored due to potential harm to human health and ecological systems. It is known that silver nanoparticles can transport heavy metals and other environmental contaminants to plants and animal cells and eventually to human cells. Therefore, the uptake of fluorophore tagged silver nanoparticles inside plant cells was studied. Although SERS has a lot of advantages over other spectroscopic methods, it has limitations in microscopy. Therefore, for the detection of nanoparticles inside plant cells a fluorescence technique has been used which is called metal enhanced fluorescence. Using this technique, it was shown that silver nanoparticles can function as a transport mechanism to carry fluorophore inside the cells.;Understanding nanoparticle-protein interaction could help in discovering new applications of nanoparticles in the field of biotechnology. In order to investigate the functional groups responsible for this interaction, which could potentially affect the structure and activity, assemblies of gold nanoparticles and bacteriophage were studied using both computational and visualization tools as a side study. The absence of positive residues on the exposed coat proteins of the bacteriophage suggests that the primary binding between gold and bacteriophage is through ligand replacement of the citrate on the gold surface with exposed carboxylic acid groups on the bacteriophage surface.
机译:对于用于检测,生物成像,信号报告和靶向药物递送的纳米颗粒和生物分子的混合组件,人们越来越感兴趣。纳米颗粒由于其独特的性质,例如易于制备,易于表面功能化,生物相容性以及易于在细胞中移动而被用于如此广泛的应用中。金属纳米颗粒的使用需要控制尺寸,这是确定纳米颗粒的生物学响应和光学性质的关键因素。在这项研究中,使用紫外可见光谱,透射电子显微镜和光散射技术获得了纳米粒子的尺寸与其表面等离子体共振峰之间的关系。由于其高选择性,表面增强拉曼光谱(SERS)已被广泛用于检测生物分子并研究其在金属表面的构象。为了能够获得最强的拉曼信号,已经研究了影响表面增强拉曼强度的因素,例如纳米粒子尺寸,pH和溶液悬浮时间。已经获得了引起强烈拉曼信号的最佳条件。;尽管纳米颗粒在医学研究中很有用,但是由于对人体健康和生态系统的潜在危害,需要对其使用进行监测。已知银纳米颗粒可以将重金属和其他环境污染物运输到植物和动物细胞,最终运输到人类细胞。因此,研究了荧光团标记的银纳米颗粒在植物细胞内的吸收。尽管SERS与其他光谱方法相比具有许多优势,但在显微镜检查中仍存在局限性。因此,为了检测植物细胞内的纳米颗粒,已经使用了一种荧光技术,称为金属增强荧光。使用这种技术,表明银纳米颗粒可以作为在细胞内携带荧光团的转运机制。了解纳米颗粒与蛋白质的相互作用可以帮助发现纳米颗粒在生物技术领域的新应用。为了研究负责这种相互作用的官能团(可能会影响其结构和活性),使用计算工具和可视化工具作为辅助研究,研究了金纳米颗粒和噬菌体的组装。噬菌体暴露的外壳蛋白上不存在阳性残基,这表明金和噬菌体之间的主要结合是通过用噬菌体表面上暴露的羧酸基团将金表面的柠檬酸盐进行配体置换。

著录项

  • 作者

    Yonel, Esra.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Chemistry Biochemistry.;Nanotechnology.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号