首页> 外文学位 >Novel Immersed Interface Method for Solving the Incompressible Navier-Stokes Equations.
【24h】

Novel Immersed Interface Method for Solving the Incompressible Navier-Stokes Equations.

机译:解决不可压缩的Navier-Stokes方程的新型浸入式界面方法。

获取原文
获取原文并翻译 | 示例

摘要

For simulations of highly complex geometries, frequently encountered in many fields of science and engineering, the process of generating a high-quality, body-fitted grid is very complicated and time-intensive. Thus, one of the principal goals of contemporary CFD is the development of numerical algorithms, which are able to deliver computationally efficient, and highly accurate solutions for a wide range of applications involving multi-physics problems, e.g. Fluid Structure Interaction (FSI). Immersed interface/boundary methods provide considerable advantages over conventional approaches, especially for flow problems containing moving boundaries.;In the present work, a novel, robust, highly-accurate, Immersed Interface Method (IIM) is developed, which is based on a local Taylor-series expansion at irregular grid points enforcing numerical stability through a local stability condition. Various immersed methods have been developed in the past; however, these methods only considered the order of the local truncation error. The numerical stability of these schemes was demonstrated (in a global sense) by considering a number of different test-problems. None of these schemes used a concrete local stability condition to derive the irregular stencil coefficients. This work will demonstrate that the local stability constraint is valid as long as the DFL-number does not reach a limiting value. The IIM integrated into a newly developed Incompressible Navier-Stokes (INS) solver is used herein to simulate fully coupled FSI problems. The extension of the novel IIM to a higher-order method, the compressible Navier-Stokes equations and the Maxwell's equations demonstrate the great potential of the novel IIM.;In the second part of this dissertation, the newly developed INS solver is employed to study the flow of a stalled airfoil and steady/unsteady stenotic flows. In this context, a new biglobal stability analysis approach based on solving an Initial Value Problem (IVP), instead of the traditionally used EigenValue Problem (EVP), is presented. It is demonstrated that this approach based on an IVP is computationally less expensive compared to EVP approaches while still capturing the relevant physics.
机译:对于在许多科学和工程领域中经常遇到的高度复杂的几何图形的模拟,生成高质量,适合人体的网格的过程非常复杂且耗时。因此,当代CFD的主要目标之一是数值算法的发展,其能够为涉及多物理问题的广泛应用提供计算有效且高精度的解决方案。流体结构相互作用(FSI)。浸入式界面/边界方法相对于传统方法具有明显的优势,尤其是对于包含移动边界的流动问题。;在当前工作中,基于本地方法开发了一种新颖,可靠,高精度的浸入式界面方法(IIM)。在不规则网格点处的泰勒级数展开通过局部稳定性条件来增强数值稳定性。过去已经开发出各种浸入式方法。但是,这些方法仅考虑了局部截断错误的顺序。通过考虑许多不同的测试问题,(从全局意义上)证明了这些方案的数值稳定性。这些方案都没有使用具体的局部稳定性条件来得出不规则的模版系数。这项工作将证明,只要DFL数未达到极限值,局部稳定性约束就是有效的。集成到新开发的不可压缩Navier-Stokes(INS)求解器中的IIM在本文中用于模拟完全耦合的FSI问题。将新型IIM扩展为高阶方法,可压缩的Navier-Stokes方程和Maxwell方程证明了新型IIM的巨大潜力。本论文的第二部分,采用新开发的INS求解器进行研究停滞的翼型和稳定/不稳定的狭窄流。在这种情况下,提出了一种基于求解初始值问题(IVP)的新的全局全局稳定性分析方法,而不是传统上使用的特征值问题(EVP)。事实证明,这种基于IVP的方法与EVP方法相比,在计算上更便宜,同时仍保留了相关的物理原理。

著录项

  • 作者

    Brehm, Christoph.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Applied Mathematics.;Computer Science.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 333 p.
  • 总页数 333
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号