首页> 外文学位 >Hybrid inorganic/organic nanostructured tandem solar cells: Simulation and fabrication methods.
【24h】

Hybrid inorganic/organic nanostructured tandem solar cells: Simulation and fabrication methods.

机译:混合无机/有机纳米结构串联太阳能电池:模拟和制造方法。

获取原文
获取原文并翻译 | 示例

摘要

Organic solar cell technologies continue to be an extremely active area of scientific research. With their promise of providing low-cost, easily-processable, multi-application photovoltaics, these devices could very possibly be the most viable and practical form of renewable energy among many being explored. However, significant technological obstacles remain that must be overcome if this technology is to successfully realize the goal of providing abundant energy while simultaneously reducing dependence on fossil fuel-based sources. Compared with inorganic solar photovoltaics, power conversion efficiencies in organics are still too low to compete economically.;Much research has been accomplished over the past three decades in an attempt to optimize the performance characteristics of planar organic solar cell devices. Unfortunately, the limitations of device physics and the optical and electrical characteristics inherent in semiconducting polymers restrict the achievable efficiency for this type of structure. A "next generation" approach to surmounting this shortcoming is to stack multiple planar devices in such a way that enhanced performance is achieved. This tactic requires hybridization through the inclusion of inorganic metal oxide components that serve a number of functions such as electron and/or hole transporters/blockers and optical spacers. In this work, these "tandem" devices are modeled and their functionality simulated using computer-based algorithms in an effort to ascertain the ideal structural, optical, and electrical properties that must be designed into actual hybrid inorganic/organic photovoltaic devices. Additionally, several solar cells are fabricated and the methods described to show the many factors to be accounted for and controlled to achieve high-efficiency devices.;Results produced in this study show that hybrid inorganic/organic solar cells can significantly improve power conversion efficiency over standard planar devices -- simulated results show efficiencies over 9% are possible. Such factors as electron and hole mobilities, structural layer thicknesses, and choice of polymer and fullerene materials were found to be critical to the optimization of these structures. A key finding is that charge carrier mobilities in the subcells must be balanced so that space charge current limitations are avoided, thereby ensuring the maximum achievable current through the tandem structures.;Hybrid inorganic/organic solar cells have tremendous promise as an alternative means of renewable energy production. Modeling and simulation are valuable tools that allow for the assessment of a multitude of various interdependent factors that impact the performance of these devices. By conducting this type of analysis prior to fabricating actual solar cells, considerable time and materials resources can be conserved while, at the same time, rapid prototyping can be accomplished and improvements in performance characteristics realized more quickly.
机译:有机太阳能电池技术仍然是科学研究中极为活跃的领域。有了提供低成本,易于加工,多用途光伏的承诺,这些设备很可能是正在探索的许多能源中最可行和最实用的可再生能源形式。但是,如果这项技术要成功实现提供丰富能量同时减少对矿物燃料来源的依赖性,则仍然必须克服重大技术障碍。与无机太阳能光伏电池相比,有机物的功率转换效率仍然太低,无法在经济上进行竞争。在过去的三十年中,为优化平面有机太阳能电池器件的性能,已经进行了许多研究。不幸的是,器件物理的局限性以及半导体聚合物固有的光学和电学特性限制了这类结构的可实现效率。克服此缺点的“下一代”方法是以实现增强性能的方式堆叠多个平面器件。该策略要求通过包含起到多种功能的无机金属氧化物组分(例如电子和/或空穴传输剂/阻滞剂和光学间隔物)进行杂交。在这项工作中,对这些“串联”设备进行了建模,并使用基于计算机的算法对它们的功能进行了模拟,以努力确定必须在实际的混合无机/有机光伏设备中设计的理想结构,光学和电性能。此外,制造了数个太阳能电池,并描述了显示出实现高效率器件需要考虑和控制的许多因素的方法。该研究结果表明,无机/有机混合太阳能电池可以显着提高功率转换效率。标准平面设备-仿真结果表明效率可以超过9%。发现诸如电子和空穴迁移率,结构层厚度以及聚合物和富勒烯材料的选择等因素对于优化这些结构至关重要。一个关键发现是,必须平衡子电池中的载流子迁移率,从而避免空间电荷电流限制,从而确保通过串联结构可达到的最大电流。混合无机/有机太阳能电池作为可再生能源的替代手段具有巨大前景能源生产。建模和仿真是有价值的工具,可用于评估影响这些设备性能的各种相互依赖的因素。通过在制造实际的太阳能电池之前进行这种类型的分析,可以节省大量的时间和材料资源,同时可以实现快速原型制作,并且可以更快地实现性能改善。

著录项

  • 作者单位

    Old Dominion University.;

  • 授予单位 Old Dominion University.;
  • 学科 Alternative Energy.;Engineering Chemical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 古生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号