首页> 外文学位 >Quantum Cascade Lasers and Optical Metamaterials: Mid-Infrared Semiconductor Nanostructures and Their Applications.
【24h】

Quantum Cascade Lasers and Optical Metamaterials: Mid-Infrared Semiconductor Nanostructures and Their Applications.

机译:量子级联激光器和光学超材料:中红外半导体纳米结构及其应用。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation examines two types of mid-infrared semiconductor nanostructure: quantum cascade (QC) lasers and optical metamaterials. These lasers and metamaterials are both composed of stacks of nanometer-thin semiconductor layers, and each has unique functionality in the mid-infrared portion of the spectrum. QC lasers have application in areas such as medical diagnostics, environmental sensing, homeland security, and infrared countermeasures. Optical metamaterials have fundamentally novel interactions with light and have potential for applications in areas such as sub-wavelength imaging, solar energy collection, and optical cloaking.;In this work, we explore several new approaches to the design of QC laser gain regions, with an emphasis on improving their wall-plug efficiency (WPE). Short injector, low-voltage defect QC lasers achieve high performance with a voltage defect of only 19 meV, overturning previously held assumptions about QC laser design. These devices operate with the highest voltage efficiency ever reported in QC lasers. Lasers with ultra-strong coupling between the injector and the upper laser level attain 50% WPE---a major accomplishment for QC technology. Furthermore, a thermoelectric effect is measured for the first time within QC lasers, informing decisions about how to design and fabricate devices for optimal temperature performance.;We describe two major efforts to improve important properties in strongly anisotropic mid-infrared metamaterials. The bandwidth and dispersion properties are improved through the use of multiple-metamaterial stacks, where the doping level and total thickness of each stack are tailored to produce a broader and flatter spectral region of negative refraction. This work demonstrates that these materials can be engineered to take on specified behavior according to design, a basic tenant of transformation optics. Preliminary work is reported in which QC gain regions are incorporated into the structure of these metamaterials, in an effort to actively reduce their optical absorption loss.;The dissertation concludes with a focus on QC lasers for specific applications. QC lasers are developed for use in sensing trace amounts of CO2 isotopes in the atmosphere. These lasers show single mode emission in continuous wave operation at 4.32 mum and are tunable over strong optical absorption lines for 12CO2, 13CO2, and 18OCO. The economic and policy implications of improved CO2 isotope measurements are considered for applications such as CO2 storage reservoir leakage monitoring, and a quantitative economic model is used to analyze the value of such measurements. We also collaborate to examine QC laser applications in non-invasive tissue measurements, miniature inter-planetary sensors, high-resolution C60 spectroscopy, and directional infrared countermeasures.
机译:本文研究了两种类型的中红外半导体纳米结构:量子级联(QC)激光器和光学超材料。这些激光器和超材料都由纳米级半导体层的堆叠组成,并且在光谱的中红外部分均具有独特的功能。 QC激光器已应用于医疗诊断,环境感应,国土安全和红外对策等领域。光学超材料在根本上与光具有新颖的相互作用,并具有在亚波长成像,太阳能收集和光学隐身等领域中应用的潜力。在这项工作中,我们探索了几种设计QC激光增益区域的新方法,包括着重于提高其墙塞效率(WPE)。短注入器,低压缺陷QC激光器仅在19 meV的电压缺陷下即可实现高性能,从而颠覆了先前关于QC激光器设计的假设。这些设备以QC激光器所报告的最高电压效率运行。在进样器和激光上限之间具有超强耦合的激光达到WPE的50%,这是QC技术的一项重大成就。此外,首次在QC激光器中测量了热电效应,从而为如何设计和制造具有最佳温度性能的设备提供了决策依据。我们描述了在强各向异性中红外超材料中改善重要性能的两项主要工作。通过使用多金属材料叠层可以改善带宽和色散特性,其中,每个叠层的掺杂水平和总厚度经过调整,可产生更宽且更平坦的负折射光谱区域。这项工作表明,可以根据设计(转换光学的基本租户)对这些材料进行设计,使其具有特定的性能。据报道,在这些超材料的结构中加入了QC增益区,以积极降低其光吸收损耗。论文的主要工作是针对特定应用的QC激光器。 QC激光器被开发用于感测大气中痕量的CO2同位素。这些激光器在4.32 mm的连续波操作中显示出单模发射,并且可通过强光吸收线对12CO2、13CO2和18OCO进行调谐。在诸如CO2储存库泄漏监测等应用中考虑了改进的CO2同位素测量的经济和政策含义,并使用定量经济模型来分析此类测量的价值。我们还合作检查QC激光在无创组织测量,微型行星际传感器,高分辨率C60光谱学和定向红外对策中的应用。

著录项

  • 作者

    Escarra, Matthew David.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.;Nanotechnology.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号