首页> 外文学位 >Passive and active mid-infrared semiconductor nanostructures: Three-dimensional metamaterials and high wall plug efficiency quantum cascade lasers.
【24h】

Passive and active mid-infrared semiconductor nanostructures: Three-dimensional metamaterials and high wall plug efficiency quantum cascade lasers.

机译:被动和主动中红外半导体纳米结构:三维超材料和高壁塞效率量子级联激光器。

获取原文
获取原文并翻译 | 示例

摘要

Every instant, light and matter are interacting in ways that shape the world around us. This dissertation examines the interaction of mid-infrared light with stacks of thin semiconductor layers. The work is divided into two parts: mid-infrared metamaterials and high wall plug efficiency (WPE) Quantum Cascade (QC) lasers. The mid-infrared metamaterials represent an entirely new class of material and have great potential for enabling highly-desired applications such as sub-diffraction imaging, confinement, and waveguiding. High WPE QC lasers greatly enhance the commercial feasibility of sensing, infrared countermeasures and free-space infrared communications.;The first part of this dissertation describes the first three-dimensional, optical metamaterial. The all-semiconductor metamaterial is based on a strongly anisotropic dielectric function and exhibits negative refraction for a large bandwidth in the mid-infrared. The underlying theory of strongly anisotropic metamaterials is discussed, detailed characterization of several metamaterials is presented, and a macroscopic beam experiment is employed to demonstrate negative refraction. A detailed study of waveguides with strongly anisotropic cores is also presented and the low-order mode cutoff for such left-handed waveguides is observed.;The second part of this dissertation discusses improvements in QC laser WPE through improved processing, packaging, and design. Devices using conventional QC design strategies processed as buried heterostructures operate with 5% WPE at room temperature in continuous wave mode, a significant improvement over previous generation devices. To further improve WPE, QC lasers based on ultra-strong coupling between the injector and upper-laser levels are designed and characterized. These devices operate with nearly 50% pulsed WPE---a true milestone for QC technology. A new type of QC laser design incorporating heterogeneous injector regions to reduce the voltage defect and thus improve WPE is also presented. Optimized devices exhibit efficiencies in excess of 30% at cryogenic temperatures. Finally, a new measurement technique to characterize lasers in continuous wave operation is described in detail. The technique is used to measure the instantaneous threshold, active core heating, device thermal resistance, and laser current efficiency as well as determine the cause of light power roll-over. This new characterization technique allows for improved understanding of QC lasers and further improvements in device performance.
机译:每一个瞬间,光和物质都以塑造我们周围世界的方式相互作用。本文研究了中红外光与薄半导体层堆叠的相互作用。这项工作分为两个部分:中红外超材料和高壁塞效率(WPE)量子级联(QC)激光器。中红外超材料代表了一种全新的材料,在实现高度期望的应用(例如亚衍射成像,限制和波导)方面具有巨大的潜力。高WPE QC激光器极大地提高了传感,红外对策和自由空间红外通信的商业可行性。;本文的第一部分描述了第一个三维光学超材料。全半导体超材料基于强各向异性介电功能,并且对于中红外中的大带宽显示负折射。讨论了强各向异性超材料的基本理论,给出了几种超材料的详细表征,并通过宏观束实验证明了负折射。还对具有强各向异性的纤芯的波导进行了详细的研究,并观察到这种左旋波导的低阶模态截止。本文的第二部分讨论了通过改进工艺,封装和设计来改善QC激光WPE。使用常规QC设计策略处理为掩埋异质结构的器件在室温下以连续波模式在5%WPE下工作,这比上一代器件有了显着改进。为了进一步改善WPE,设计和表征了基于进样器和上激光级之间超强耦合的QC激光器。这些设备以近50%的脉冲WPE运作-这是QC技术的真正里程碑。还提出了一种新型的QC激光器设计,该设计结合了异质注入器区域以减少电压缺陷,从而改善WPE。经过优化的设备在低温下的效率超过30%。最后,详细描述了表征连续波激光器中的激光的新测量技术。该技术用于测量瞬时阈值,有源纤芯发热,器件热阻和激光电流效率,以及确定光功率翻转的原因。这项新的表征技术可改善对QC激光器的了解,并进一步改善器件性能。

著录项

  • 作者

    Hoffman, Anthony J.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号