首页> 外文学位 >Mechanistic Properties of Field and Laboratory-Produced Warm Mix Asphalt Mixtures from Manitoba, Canada.
【24h】

Mechanistic Properties of Field and Laboratory-Produced Warm Mix Asphalt Mixtures from Manitoba, Canada.

机译:来自加拿大曼尼托巴的田间和实验室生产的温拌沥青混合料的机械性能。

获取原文
获取原文并翻译 | 示例

摘要

Warm Mix Asphalt is a generic term that refers to a specific group of technologies used to produce asphalt paving mixtures at lower temperatures than traditional Hot Mix Asphalt. There are many WMA technologies being used, foaming, organic, and chemical based technologies, and it is believed that others will soon enter the market. The concept and use of warm mix asphalt is becoming more popular in the asphalt industry. The promise of reduced energy consumption, reduced emissions, and a more workable product is very appealing to an industry pressured by environmentalists. However, the use of WMA may come with some potential issues as well. Lower production temperatures may result in softer asphalt due to the reduced oxidative aging. While poorly dried aggregates may create issue with moisture damage. The evaluation of field projects is necessary to determine the real benefits that this technology can offer. The present research analyzed the mechanistic performance of field and laboratory-produced mixtures from the Manitoba PTH-14 project in Canada.;The project was constructed in summer of 2010 and consisted of a side by side HMA control section and three WMA sections in which the Advera, Evotherm 3G and Sasobit technologies were used.;This study evaluated the resistance of field and laboratory-produced WMA mixtures in terms of their resistance to moisture damage, resistance to permanent deformation, resistance to reflective cracking and to fatigue cracking. Moisture damage was evaluated using Indirect Tensile Strength and |E*| property under multiple freeze-thaw cycles. The resistance to permanent deformation was analyzed conducting repeated loaded triaxial testing. Furthermore, the fatigue cracking and reflective cracking were studied using the flexural beam fatigue and the TTI Overlay Tester, respectively.;For the field-produced mixtures all met the minimum unconditioned ITS criterion of 65 psi at 77°F and the minimum indirect tensile strength ratio of 80% after 1 F-T cycle. While comparable TSR and |E*| ratios were observed for the mixtures after 1 F-T cycle, the WMA-Sasobit exhibited lower resistance to moisture damage when assessed after 3 F-T cycles. Except for the WMA-Sasobit, the WMA mixtures showed similar or higher resistance to reflective cracking when measured using the TTI overlay tester when compared to the HMA-control mixture. All WMA mixtures exhibited similar resistance to permanent deformation in the FN test at the LTPPBind 50% reliability temperature (118F) when compared to the HMA control section. However, none of the mixtures (including the HMA) met the proposed flow number criterion for warm-mix asphalt. When tested in the FN at the effective pavement temperature (92°F), a different ranking for the mixtures resistance to rutting was detected.;For the field-produced mixtures all met the minimum unconditioned ITS criterion of 65 psi at 77°F; however, the minimum indirect tensile strength ratio of 80% after 1 F-T cycle was not met by the WMA mixtures. Highly stiffness reductions were detected for the WMA mixtures after been subjected to F-T cycling, for both TSR and |E*| ratio results. Except for the WMA-Sasobit, the WMA mixtures showed similar resistance to reflective cracking when measured using the TTI overlay tester when compared to the HMA-control section. HMA and WMA-Sasobit presented a higher resistance to permanent deformation when compared to WMA-Advera and WMA-Evotherm.;The comparison between the results from the field and laboratory-produced mixtures exhibited differences in performance. The field-produced mixtures presented higher stiffness values when compared to the laboratory-produced mixtures. For this reason a conditioning difference between laboratory protocols and plant production procedures is suggested. Additionally, from the performance data a different conditioning protocol should be further study for each type of additive. The results exhibited adhesion problems between the asphalt binder and the aggregates that resulted in moisture damage for the laboratory-produced mixtures. A revision for the additives incorporation in laboratory protocols should be further assessed to determine the best way possible to simulate plant procedures.;The continuous field monitoring for performance of the various sections will help in assessing any proposed criterion as well as the effectiveness of WMA mixtures in cold weather areas such as Manitoba. Additionally, this data will provided important information of real long term performance that can be compared to the laboratory performance testing of field-produced mixtures.
机译:温拌沥青是一个通用术语,是指一组特定的技术,用于在比传统的热拌沥青更低的温度下生产沥青摊铺混合物。有许多正在使用的WMA技术,发泡技术,有机技术和化学技术,并且相信其他技术很快就会进入市场。在沥青工业中,热拌沥青的概念和使用正变得越来越流行。减少能耗,减少排放和使产品更实用的承诺,对环保主义者施加压力的行业非常有吸引力。但是,使用WMA可能还会带来一些潜在的问题。较低的生产温度可能会由于减少的氧化老化而导致沥青软化。虽然干燥不良的集料可能会造成水分损坏的问题。对现场项目进行评估对于确定该技术可以带来的真正好处是必要的。本研究分析了加拿大Manitoba PTH-14项目的现场和实验室生产的混合物的机械性能。该项目于2010年夏季建成,由并排的HMA控制段和三个WMA段组成,其中使用了Advera,Evotherm 3G和Sasobit技术。该研究从野外和实验室生产的WMA混合物的抗湿破坏性,抗永久变形性,抗反射性裂纹和疲劳裂纹性方面评估了其抗性。使用间接拉伸强度和| E * |评估水分损伤多个冻融循环下的特性。对永久变形的抵抗力进行了反复的三轴测试。此外,分别使用挠曲梁疲劳和TTI叠加测试仪研究了疲劳裂纹和反射裂纹。对于现场生产的混合物,在77°F时均满足65 psi的最低无条件ITS准则和最低间接拉伸强度1 FT循环后的比率为80%。可比的TSR和| E * |在1个F-T循环后观察混合物的比率,WMA-Sasobit在3个F-T循环后评估显示出较低的耐湿气破坏性。与WMA-Sasobit相比,与WMA-Sasobit相比,使用TTI覆盖测试仪测量时,WMA混合物显示出相似或更高的抗反射龟裂性。与HMA对照部分相比,在LTPPBind 50%可靠温度(118F)的FN测试中,所有WMA混合物均表现出相似的抗永久变形能力。但是,没有一种混合物(包括HMA)符合提议的温拌沥青流量标准。当在FN的有效路面温度(92°F)下进行测试时,检测到的混合物对车辙抗性的排名不同。对于田间生产的混合物,所有混合物均在77°F时满足ITS的最低条件65 psi;但是,WMA混合物未达到1 F-T循环后80%的最小间接拉伸强度比率。在F-T循环后,对于WMA混合物,无论是TSR还是| E * |,都检测到很高的刚度降低。比率结果。除使用WMA-Sasobit以外,与HMA-Control部分相比,使用TTI覆盖测试仪测量时,WMA混合物对反射裂纹的抵抗力相似。与WMA-Advera和WMA-Evotherm相比,HMA和WMA-Sasobit具有更高的抗永久变形能力。现场结果与实验室生产的混合物的比较显示出性能差异。与实验室生产的混合物相比,现场生产的混合物具有更高的刚度值。因此,建议在实验室规程和工厂生产程序之间存在条件差异。此外,从性能数据中,应针对每种类型的添加剂进一步研究不同的调节方案。结果显示出沥青粘合剂与骨料之间的粘附性问题,导致实验室生产的混合物受到湿气损害。应进一步评估对纳入实验室规程的添加剂的修订,以确定模拟工厂程序的最佳可能方法。对各个部分的性能进行连续的现场监控将有助于评估任何提议的标准以及WMA混合物的有效性在马尼托巴等寒冷地区。此外,这些数据将提供实际长期性能的重要信息,可以将其与现场生产的混合物的实验室性能测试进行比较。

著录项

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Engineering Civil.
  • 学位 M.S.
  • 年度 2011
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号