首页> 外文学位 >Control of gantry and tower cranes.
【24h】

Control of gantry and tower cranes.

机译:龙门和塔式起重机的控制。

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this work is to design robust, fast, and practical controllers for gantry and tower cranes. The controllers are designed to transfer the load from point to point as fast as possible and, at the same time, the load swing is kept small during the transfer process and completely vanishes at the load destination.; The designed controllers are based on two approaches. In the first approach, a gain-scheduling feedback controller is designed to move the load from point to point within one oscillation cycle without inducing large swings. The settling time of the system is taken to be equal to the period of oscillation of the load. This criterion enables calculation of the controller feedback gains for varying load weight and cable length. The position references for this controller are step functions. In the second approach, the transfer process and the swing control are separated in the controller design. We use a PD-controller for tracking, while the anti-swing controller is designed using three different methods: (a) a classical PD controller, (b) two controllers based on a delayed-feedback technique, and (c) a fuzzy logic controller that maps the delayed-feedback controller performance.; To validate the designed controllers, an experimental setup was built.; With friction compensation, the experimental results are in good agreement with the computer simulations. The gain-scheduling controllers transfer the load smoothly without inducing an overshoot in the trolley position. Moreover, the load can be transferred in a time near to the optimal tune with small swing angles during tire transfer process. With full-state feedback, the crane can reach any position in the working environment without exceeding the system power capability by controlling the forward gain in the feedback loop. (Abstract shortened by UMI.)
机译:这项工作的主要目的是为龙门起重机和塔式起重机设计坚固,快速而实用的控制器。控制器的设计目的是尽可能快地将负载从点到点传输,同时,在传输过程中,负载摆幅应保持很小,并在负载目的地完全消失。设计的控制器基于两种方法。在第一种方法中,设计了增益调度反馈控制器,以在一个振荡周期内将负载从一个点移动到另一个点,而不会引起大的摆幅。系统的建立时间应等于负载的振荡周期。该标准可以计算出用于改变负载重量和电缆长度的控制器反馈增益。该控制器的位置参考是步进功能。在第二种方法中,传递过程和摆动控制在控制器设计中是分开的。我们使用PD控制器进行跟踪,而防摇摆控制器是通过三种不同的方法设计的:(a)经典PD控制器,(b)基于延迟反馈技术的两个控制器,以及(c)模糊逻辑映射延迟反馈控制器性能的控制器。为了验证设计的控制器,建立了实验装置。通过摩擦补偿,实验结果与计算机仿真结果吻合良好。增益调度控制器可平稳地传递负载,而不会在手推车位置引起过冲。此外,在轮胎转移过程中,可以在接近最佳曲调的时间内以较小的摆角转移负荷。借助全状态反馈,通过控制反馈回路中的前向增益,起重机可以在工作环境中到达任何位置,而不会超出系统的功率范围。 (摘要由UMI缩短。)

著录项

  • 作者

    Omar, Hanafy Mohammed.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号