首页> 外文学位 >Derivation of equivalent boundary conditions using the homogenization method and their implementation in time-domain electromagnetics techniques.
【24h】

Derivation of equivalent boundary conditions using the homogenization method and their implementation in time-domain electromagnetics techniques.

机译:使用均质化方法推导等效边界条件及其在时域电磁技术中的实现。

获取原文
获取原文并翻译 | 示例

摘要

Equivalent Boundary Conditions are important in disciplines where boundary conditions are involved like, acoustics, hydrodynamics and electromagnetics. In electromagnetics they are used in scattering, propagation, and waveguide analysis to simulate material and geometric properties of surface involved. These boundary conditions provide an approximate relation of the Electric and Magnetic fields in the complex medium under consideration by replacing the entire medium with just a layer of newly derived electric and magnetic field. In other words, Approximate Boundary Condition converts a two (or more) media problem into a single medium problem.; In my thesis the method of homogenization is applied to the derivation of the equivalent boundary condition for a thin layer of dielectric and/or magnetic material. Homogenization is an asymptotic method for the analysis of physical phenomena possessing variations on widely differing scales. The details of the method is presented in the thesis. Different boundary conditions for various geometries are derived.; The objective of the derivation of these boundary conditions is to reduce the computational expense while retaining sufficient solution accuracy. The boundary conditions will be implemented in S22-FDTD technique. Numerical results are compared with those from the numerical model without the boundary condition.; The run time of a finite-difference time-domain (FDTD) simulation is proportional to the required simulated time, and the chosen time step, Δ t run time∝simulatedtimeD t 1 ; A major limitation of existing FDTD schemes is the conditionally stable nature of the technique, which sets an upper bound on Δt. The bound on Δt leads to undesirable and often unattainable run times. This thesis investigates the alternating direction implicit method for FDTD (ADI-FDTD) schemes. ADI-FDTD is unconditionally stable, allowing Δ t to be increased and the resulting run time decreased. For highly resolved FDTD models, ADI-FDTD's ability to allow larger time steps increases modeling capabilities. There is a memory overhead associated with using ADI-FDTD, however the decrease in run time makes it a desired technique for many industrial applications.; A comprehensive comparative study is conducted for ADI-FDTD vs. Yee's traditional FDTD scheme. Classes of appropriate ADI-FDTD type problems are then identified. Then, dispersive material properties are developed and implemented into ADI-FDTD. Finally, the boundary conditions are implemented in to ADI-FDTD. (Abstract shortened by UMI.)
机译:等效边界条件在涉及边界条件(例如声学,流体动力学和电磁学)的学科中非常重要。在电磁学中,它们被用于散射,传播和波导分析中,以模拟所涉及表面的材料和几何特性。这些边界条件通过仅用一层新近导出的电场和磁场代替整个介质,从而提供了所考虑的复杂介质中电场和磁场的近似关系。换句话说,近似边界条件将两个(或多个)介质问题转换为单个介质问题。在我的论文中,均质化方法用于推导介电和/或磁性材料薄层的等效边界条件。均质化是一种渐进方法,用于分析在不同尺度上具有变化的物理现象。本文详细介绍了该方法。得出了各种几何形状的不同边界条件。推导这些边界条件的目的是减少计算开销,同时保持足够的求解精度。边界条件将以S22-FDTD技术实现。将数值结果与没有边界条件的数值模型的结果进行比较。时域有限差分(FDTD)模拟的运行时间与所需的模拟时间成比例,所选的时间步长Δ t < rm> 运行时间∝ 模拟的时间 D t 1 ;现有FDTD方案的主要局限性在于该技术的条件稳定性,它为Δ t 设置了上限。 Δ t 的界限会导致运行时间不理想,而且往往无法达到。本文研究了FDTD方案的交替方向隐式方法(ADI-FDTD)。 ADI-FDTD是无条件稳定的,因此可以增加Δ t ,并缩短运行时间。对于高度解析的FDTD模型,ADI-FDTD允许更长的时间步长的功能可以增强建模能力。使用ADI-FDTD会产生存储器开销,但是运行时间的减少使它成为许多工业应用的理想技术。针对ADI-FDTD与Yee的传统FDTD方案进行了全面的比较研究。然后确定适当的ADI-FDTD类型问题的类别。然后,开发了分散材料的特性并将其应用于ADI-FDTD。最后,边界条件在ADI-FDTD中实现。 (摘要由UMI缩短。)

著录项

  • 作者

    Bhobe, Alpesh U.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.5664
  • 总页数 306
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号