首页> 外文学位 >Fabrication and applications of 3C-silicon carbide on insulator by the grow-a-substrate method.
【24h】

Fabrication and applications of 3C-silicon carbide on insulator by the grow-a-substrate method.

机译:通过基底生长法在绝缘体上制备3C碳化硅及其应用。

获取原文
获取原文并翻译 | 示例

摘要

Due to its outstanding electrical, chemical and mechanical properties, silicon carbide (SiC) is a leading material for MEMS in harsh environment applications. Silicon carbide-on-oxide wafers are attractive substrates for SiC surface micromachined devices since the buried oxide layer provides both electrical isolation and serves as a sacrificial layer. Wafer bonding is commonly used to fabricate these substrates, but unfortunately bonding yields are often very low due to high tensile stresses in the SIC films. This dissertation reports a novel, bonding-free method to fabricate 3C-SiC-on-insulator substrates. The process, called the Grow-A-Substrate (GAS) method, bypasses wafer bonding by using a high deposition rate polysilicon process in conjunction with wet chemical etching to produce wafer-thick polysilicon layers that serve as substrates for the 3C-SiC-on-insulator (SiCOI) structures. Because wafer bonding is not used, insulators of various material and thickness can be easily utilized. Using this method, transfer rates over 99% are readily achievable. Various applications could benefit from this technology, which include high temperature MEMS sensors and actuators, and SiC electronic devices.; 3C-SiC on insulator substrates offer an effective means to fabricate 3C-SiC strain gauges. In order to measure the gauge factor from the 3C-SiC strain gauge, a cantilever beam testing specimen was made and evaluated. The maximum gauge factor obtained from the strain gauge was −17.78 in the 100> direction.; 3C-SiCOI Schottky diodes and Schottky diode-based hydrogen sensors were also investigated. Using the rectifying behavior of the Pd/3C-SiCOI system, hydrogen sensors were tested in hydrogen ambients of varying concentration. However, due to the large leakage currents of the diodes, detection was only possible at a hydrogen concentration of 100%.; Using the 3C-SiC-on-Insulator wafers, single-crystal (100) and (110) 3C-SiC lateral resonators were fabricated and electrically tested over a the pressure range from 15 μTorr to 760 Torr. The highest measured Q for a (100) 3C-SiC lateral resonator was 103,000 at 15 μTorr, and the highest Q obtained for a (110) 3C-SiC lateral resonator was 77,000 at 15 μTorr. (100) 3C-SiC exhibits a higher intrinsic Q than (110) 3C-SiC, perhaps due to a higher crystal quality. It was found that the difference in resonant frequency between (100) and (110) 3C-SiC resonators of equivalent geometry was around 0.2%, which is well within the error range of the measurement. This suggests that the two orientations could have nearly the same Young's modulus, however, more study of (100) 3C-SiC films is required before a definite conclusion can be made.
机译:由于其出色的电,化学和机械性能,碳化硅(SiC)是恶劣环境应用中MEMS的领先材料。氧化碳化硅晶片是用于SiC表面微加工设备的有吸引力的基板,因为掩埋的氧化物层既提供了电隔离又充当了牺牲层。晶圆键合通常用于制造这些基板,但不幸的是,由于SIC膜中的高拉伸应力,键合成品率通常很低。本论文报道了一种新颖的,无粘结的绝缘体上3C-SiC衬底的制备方法。该工艺称为生长A衬底(GAS)方法,通过使用高沉积速率多晶硅工艺与湿法化学蚀刻相结合来绕过晶圆键合,以生产用作3C-SiC-on衬底的晶圆厚多晶硅层绝缘子(SiCOI)结构。因为不使用晶片键合,所以可以容易地利用各种材料和厚度的绝缘体。使用此方法,可以轻松实现超过99%的传输率。这项技术可受益于各种应用,包括高温MEMS传感器和执行器以及SiC电子设备。绝缘体衬底上的3C-SiC提供了一种制造3C-SiC应变仪的有效手段。为了测量3C-SiC应变仪的应变系数,制作了悬臂梁测试样品并进行了评估。从应变仪获得的最大应变系数在<100>方向上为-17.78。还研究了3C-SiCOI肖特基二极管和基于肖特基二极管的氢传感器。利用Pd / 3C-SiCOI系统的整流性能,在浓度不同的氢气环境中测试了氢气传感器。但是,由于二极管的大泄漏电流,仅在氢浓度为100%时才可能进行检测。使用绝缘体上的3C-SiC晶片,制造了单晶(100)和(110)3C-SiC横向谐振器,并在15μTorr至760 Torr的压力范围内进行了电测试。 (100)3C-SiC横向谐振器的最高测量的 Q 在15μTorr下为103,000,而(110)3C-SiC横向谐振器的最高测量的 Q 为77,000 at 15微托(100)3C-SiC的固有 Q 比(110)3C-SiC高,这可能是由于晶体质量较高。发现具有相同几何形状的(100)和(110)3C-SiC谐振器之间的谐振频率差约为0.2%,这恰好在测量的误差范围内。这表明这两个取向可能具有几乎相同的杨氏模量,但是,在做出确定的结论之前,需要对(100)3C-SiC薄膜进行更多的研究。

著录项

  • 作者

    Kuo, Hung-I.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号