首页> 外文学位 >Fine particle formation in indoor environments: Levels, influencing factors, and implications.
【24h】

Fine particle formation in indoor environments: Levels, influencing factors, and implications.

机译:室内环境中细颗粒的形成:水平,影响因素和含义。

获取原文
获取原文并翻译 | 示例

摘要

Experiments were conducted in an 11-m3 stainless steel chamber to investigate secondary particle formation/growth in indoor environments. Experimental results indicate that rapid particle growth occurs due to homogeneous reactions between ozone and terpenes, and subsequent gas-to-particle partitioning of reaction products. Experimental results also indicate that many consumer products can emit significant amounts of terpenes that can serve as precursors to the formation of indoor fine particles.; A new Indoor Chemistry and Exposure Model (ICEM) was used to predict dynamic particle mass concentrations based on detailed homogeneous chemical mechanisms and partitioning of semi-volatile products to particles. The ICEM allows for the simulation of air exchange processes, indoor emissions, chemical reactions, deposition, and variations in outdoor air quality. Predicted indoor secondary particle mass concentrations are in good agreement with experimental results.; Both experimental and model results suggest that secondary particle mass concentrations increase significantly at lower building air exchange rates. This result is significant given a continuing trend toward building weatherization for purposes of energy conservation. Predicted indoor secondary particle concentrations increase with lower temperatures, higher outdoor particle levels, higher outdoor ozone levels, and higher indoor terpene emission rates. Indoor secondary particle concentrations resulting from reactions between ozone that originates outdoors and terpenes that originate from indoor sources can be higher than indoor particle concentrations resulting from the transport of outdoor particles. If ozone generation air "purifiers" and elevated terpene levels are simultaneously present in indoor environments, the resulting indoor secondary particle mass concentrations can exceed 65 mug/m3.; The implications of this study are significant. It appears that it is now possible to reasonably simulate complex indoor chemistry and particle growth dynamics using a state-of-the-art model (ICEM). More importantly, it appears that under some conditions, indoor air chemistry can lead to significant increases in human exposure to fine particles. Such exposure could be reduced by avoiding indoor sources of ozone, e.g., from ozone generators marketed as air "purifiers", or by reducing the use of consumer products that contain terpenes, especially during the summer ozone season.
机译:在一个11立方米的不锈钢室内进行实验,以研究室内环境中的二次颗粒形成/生长。实验结果表明,由于臭氧和萜烯之间的均相反应以及随后反应产物的气体-颗粒分配,使得颗粒快速生长。实验结果还表明,许多消费品会散发出大量的萜烯,这些萜烯可作为形成室内细颗粒的前体。一种新的室内化学和暴露模型(ICEM)用于基于详细的均相化学机理和半挥发性产物向颗粒的分配来预测动态颗粒质量浓度。 ICEM可以模拟空气交换过程,室内排放,化学反应,沉积以及室外空气质量的变化。预测的室内二次粒子质量浓度与实验结果非常吻合。实验和模型结果均表明,在较低的建筑物空气交换速率下,次级颗粒质量浓度会显着增加。考虑到出于节能的目的,建筑风化的持续趋势,这一结果意义重大。预计的室内次级颗粒物浓度会随着温度降低,室外颗粒物水平升高,室外臭氧水平升高和室内萜烯排放率升高而增加。由源自室外的臭氧与源自室内源的萜烯之间的反应产生的室内次级粒子浓度可能高于由室外粒子的运输产生的室内粒子浓度。如果在室内环境中同时存在产生臭氧的空气“净化器”和升高的萜烯水平,则室内次级颗粒的质量浓度可能会超过65马克杯/立方米。这项研究的意义是重大的。现在看来,使用最新模型(ICEM)可以合理地模拟复杂的室内化学和颗粒生长动力学。更重要的是,似乎在某些条件下,室内空气中的化学物质会导致人体暴露于细小颗粒的现象显着增加。可以通过避免室内臭氧源(例如,从以空气“净化器”销售的臭氧发生器中)或通过减少使用含萜烯的消费产品来减少此类臭氧暴露,尤其是在夏季臭氧季节中。

著录项

  • 作者

    Sarwar, Md Golam.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 234 p.
  • 总页数 234
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号