首页> 外文学位 >Analysis and design of precision optical components in high-intensity, third-generation x-ray beamlines.
【24h】

Analysis and design of precision optical components in high-intensity, third-generation x-ray beamlines.

机译:高强度第三代X射​​线束线中的精密光学组件的分析和设计。

获取原文
获取原文并翻译 | 示例

摘要

A novel mounting and cryogenic coolant manifold system to minimize sub-micron mounting strains and improve the sealing of the liquid nitrogen coolant in the ultra-high-vacuum environment of high-intensity x-ray beamlines is proposed. A unique method to accurately simulate the complex interaction of the x-ray beam with the silicon monochromator and the subsequent thermal distortion is presented.; Silicon crystal monochromators at cryogenic temperatures have been used with great success at third generation synchrotron radiation sources. At Argonne's Advanced Photon Source, APS, the unique characteristics of silicon at liquid nitrogen temperatures (∼80°K) have been leveraged to significantly minimize the thermally induced distortions on beamline optical components. Non-linear finite element analysis (FEA) simulations, which take into consideration the highly sensitive changes in temperature due to the coefficient of thermal expansion and thermal conductivity were investigated.; The thermal-stress problem was performed and compared with experimental measurements, made at the APS sector 1 insertion device (1-ID) beamline. Based on the FEA results of the current monochromator design, a unique mounting mechanism that improves the sealing of the liquid nitrogen coolant without inducing sub-micron strains was designed, analyzed and tested. In general, the use of the finite element method in predicting the overall thermal and structural response of precision optical components with a depth-dependent, high-flux thermal load is shown to be an effective predictive design tool. This research is supported by the U.S. Department of Energy, BES-Material Science, under Contract No. W-31-109-ENG-38.
机译:提出了一种新颖的安装和低温冷却剂歧管系统,以最小化亚微米安装应变并改善在高强度X射线束线的超高真空环境中液氮冷却剂的密封性。提出了一种独特的方法来精确模拟X射线束与硅单色仪的复杂相互作用以及随后的热变形。低温下的硅晶体单色仪已成功用于第三代同步加速器辐射源。在Argonne的高级光子源APS中,已经利用了硅在液氮温度(〜80°K)下的独特特性,以最大程度地减小光束线光学组件上的热致畸变。研究了非线性有限元分析(FEA)模拟,该模拟考虑了由于热膨胀系数和导热系数引起的温度的高度敏感变化。进行了热应力问题,并将其与在APS扇区1插入设备(1-ID)束线上进行的实验测量值进行了比较。基于当前单色仪设计的有限元分析结果,设计,分析和测试了一种独特的安装机制,该机制可提高液氮冷却剂的密封性而不会引起亚微米应变。通常,使用有限元方法预测具有深度相关的高通量热负荷的精密光学组件的整体热响应和结构响应是一种有效的预测设计工具。这项研究得到美国能源部BES-Material Science的支持,合同号为W-31-109-ENG-38。

著录项

  • 作者

    Tajiri, Gordon Chikao.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Mechanical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号