首页> 外文学位 >Physiological control of photosynthesis and fermentation in the cyanobacterium Arthrospira (Spirulina) maxima CS-328 for biofuel production.
【24h】

Physiological control of photosynthesis and fermentation in the cyanobacterium Arthrospira (Spirulina) maxima CS-328 for biofuel production.

机译:蓝藻节气杆菌(螺旋藻)CS-328中用于生物燃料生产的光合作用和发酵的生理控制。

获取原文
获取原文并翻译 | 示例

摘要

Oxygenic phototrophs have the ability to oxidize water via a well characterized photosystem complex yielding protons, oxygen, and electrons. Electrons and protons are used to fix carbon dioxide to produce reduced carbon substrates to be used for growth and energy storage. The use of aquatic microbial oxygenic phototrophs such as algae, cyanobacteria, or diatoms rather than land-based crops to produce fuels has been described as an advantageous potential strategy for carbon-neutral solar energy to fuel conversion.1 Cyanobacteria of the genus Arthrospira have particular advantages for mass-cultivation2, and produce fermentative products such as ethanol and hydrogen that could be used as fuels. Here photosynthesis and fermentation were studied in the organism Arthrospira maxima (formerly known as Spirulina maxima) strain CS-328. This dissertation presents several strategies for control over photosynthesis and fermentation in A. maxima that elucidate the role of bicarbonate, nickel, sodium gradients, and osmostic stress.;Chapter 1 demonstrates A. maxima's strong requirement for inorganic carbon for efficient Photosystem II turnover in vivo . The largest reversible bicarbonate effect on PSII activity ever observed is reported, which is due to the requirement for bicarbonate at the water oxidizing complex. This work also demonstrates a requirement for sodium-ion gradients in order to efficiently uptake inorganic carbon in the form of bicarbonate.;Chapter 2 demonstrates A. maxima's requirement for low (1.5 muM) concentrations of nickel in growth medium for increased in vitro hydrogenase activity and in vivo hydrogen evolution rates and yields. This nickel requirement is shown to inhibit growth at high light levels, indicating a trade-off between high-light growth and high hydrogenase activities in this organism.;Chapter 3 reports a new method for studying fermentative product formation from microbial suspensions. All excreted fermentative products from A. maxima can be identified and quantified within 5.3% error using cryoprobe-assisted proton nuclear magnetic resonance spectroscopy in concentrations ranging from 50 muM -- 3 mM with sampling times under 10 minutes. This method is used in chapters 4 and 5 to measure total fermentative end-product formation from cultures of A. maxima under conditions designed to increase fermentative flux.;In Chapter 4, excreted carbon products are detected during anaerobic metabolism under conditions that remove a sodium ion gradient. The results show that A. maxima utilizes on a sodium ion gradient under anaerobic conditions to perform an energy requiring process. Removal of this ion gradient causes cells to increase their cellular demand for ATP and thus increases carbohydrate consumption and total fermentative product formation by approximately 67%.;In Chapter 5, osmotic stress created by growing cells photoautotrophically in growth medium with added sodium (up to 1M additional NaCl) and fermenting in a hypotonic buffer is shown to increase sugar catabolism and fermentative product formation of some products. While hydrogen production is not increased by this strategy, ethanol formation increases by 121-fold. Hypotonic stress is thus a strategy for increasing mobilization of stored carbohydrates through fermentation.;1. G. Charles Dismukes, Damian Carrieri, Nicholas Bennette, Gennady M. Ananyev, and Matthew C Posewitz. "Aquatic phototrophs: efficient alternatives to land-based crops for biofuels" Current Opinion in Biotechnology. 2008, 19, 235-240. 2. Gennady Ananyev, Damian Carrieri, and G. Charles Dismukes. "Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium Arthrospira (Spirulina) maxima" Applied and Environmental Microbiology. 2008, 74, (19), 6102-6113.
机译:生氧光养菌具有通过特征明确的光系统复合物氧化水的能力,可产生质子,氧和电子。电子和质子用于固定二氧化碳,以生产还原碳基底,用于生长和储能。据描述,使用藻类,蓝细菌或硅藻之类的水生微生物摄氧营养养分而不是陆基农作物来生产燃料是碳中和太阳能转化燃料的一种有利的潜在策略。节肢动物属的蓝细菌特别有优势。大量培养的优势2,并生产出可用作乙醇的发酵产物,例如乙醇和氢气。在此,对最大节肢动物螺旋藻(以前称为最大螺旋藻)CS-328菌株进行了光合作用和发酵的研究。本文提出了几种控制拟南芥光合作用和发酵的策略,阐明了碳酸氢盐,镍,钠梯度和渗透压的作用。第一章证明了拟南芥对无机碳的强烈需求,以使其在体内有效地实现光系统II转换。 。据报道,有史以来最大的可逆碳酸氢盐对PSII活性的影响,这是由于在水氧化复合物中需要碳酸氢盐。这项工作还证明了钠离子梯度的要求,以便有效地吸收碳酸氢盐形式的无机碳。第2章证明了A.maxima对生长培养基中低浓度(1.5μM)的镍的要求,以增加体外氢化酶的活性以及体内的氢气释放速率和产量。镍的需求在高光下抑制生长,表明该生物在高光生长和高氢化酶活性之间进行了权衡。第三章报道了一种研究由微生物悬浮液形成发酵产物的新方法。使用冷冻探针辅助的质子核磁共振波谱仪,浓度范围为50μM-3 mM,采样时间在10分钟以内,可以识别并定量所有来自A.maxima的发酵产物并在5.3%的误差内进行定量。在第4章和第5章中使用此方法来测量在旨在增加发酵通量的条件下最大曲霉培养物中总发酵终产物的形成;在第4章中,在去除钠的条件下厌氧代谢过程中检测到了排泄的碳产物。离子梯度。结果表明最大拟南芥利用厌氧条件下的钠离子梯度来进行能量需求过程。去除此离子梯度会导致细胞增加其对ATP的细胞需求,从而使碳水化合物消耗和总发酵产物形成增加约67%.;在第5章中,通过在添加钠的生长培养基中光养养细胞而产生的渗透胁迫额外添加1M NaCl)和在低渗缓冲液中发酵会增加糖的分解代谢和某些产品的发酵产物形成。尽管通过该策略不会增加氢气的产生,但是乙醇的形成却增加了121倍。低渗胁迫因此是通过发酵增加所储存的碳水化合物的动员的策略。 G. Charles Dismukes,Damian Carrieri,Nicholas Bennette,Gennady M. Ananyev和Matthew C Posewitz。 “水生营养生物:陆上农作物作为生物燃料的有效替代品”生物技术最新观点。 2008,19,235-240。 2.根纳季·阿南耶夫(Gennady Ananyev),达米安·卡里里(Damian Carrieri)和G.查尔斯·迪缪克斯(G. Charles Dismukes)。 “通过环境线索优化代谢能力和通量,以最大程度地增加最大的蓝藻(螺旋藻)产氢”,应用和环境微生物学。 2008,74,(19),6102-6113。

著录项

  • 作者

    Carrieri, Damian Joseph.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Alternative Energy.;Chemistry Biochemistry.;Biology Plant Physiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;植物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号