首页> 外文学位 >Boundary value problems, oscillation theory, and the Cauchy functions for dynamic equations on a measure chain.
【24h】

Boundary value problems, oscillation theory, and the Cauchy functions for dynamic equations on a measure chain.

机译:测度链上动力学方程的边值问题,振动理论和柯西函数。

获取原文
获取原文并翻译 | 示例

摘要

In Chapter 1 we briefly discuss the calculus on measure chains which was developed by Stefan Hilger. For functions f:T R we introduce the delta-derivative and the delta-integral and state fundamental results. We then state some known results which we will use to prove our main results in Chapters 2 and 3.; In Chapter 2 we prove existence and uniqueness theorems for solutions of the boundary value problem xDDt =f&parl0;t,xst &parr0;,xa=A,x&parl0;s 2b&parr0;=B for t in a measure chain T . The main result in this chapter is to show that if we have upper and lower solutions of xDDt =f&parl0;t,xst&parr0; with the lower solution alpha(t) below the upper solution beta(t) and if alpha(a) ≤ A ≤ beta(a) and alpha(sigma2 (b)) ≤ B ≤ beta(sigma2 (b)), then our boundary value problem has a solution and this solution stays between alpha(t) and beta( t). We then use this result to show other existence-uniqueness theorems.; At the beginning of Chapter 3 we are concerned with proving various properties of an exponential function for a time scale. One of our main results in this chapter is to completely determine the sign of this exponential function. This then determines when first order linear homogeneous dynamic equations and their adjoints are oscillatory or nonoscillatory. In the last section of this chapter we derive the characteristic equation of a higher order linear dynamic equation on a time scale and give oscillation criteria for this dynamic equation on a time scale.; In Chapter 4 we consider the n-th order linear dynamic equation Pxt=S ni=0pi tx&parl0;si t&parr0;=0 where pi(t), 0 ≤ i ≤ n, are real-valued functions defined on T . In this chapter we only consider time scales T such that every point in T is isolated. We define the Cauchy function K( t, s) for this dynamic equation and then we prove a variation of constants formula. One of our main concerns is to see how the Cauchy function for an equation is related to the Cauchy functions for the factored parts of the operator P. Finally we consider the equation Pxt=S ni=0pix&parl0; sit&parr0; =0 where each of the pi's is a constant and obtain a formula for the Cauchy function.
机译:在第一章中,我们简要讨论了由Stefan Hilger开发的度量链上的演算。对于函数f:T R,我们介绍了增量导数和增量积分以及状态基本结果。然后,我们在第2章和第3章中陈述一些已知的结果,这些结果将用来证明我们的主要结果。在第二章中,我们证明了度量链T中的边值问题xDDt = f&parl0; t,xst&parr0;,xa = A,x&parl0; s 2b&parr0; = B的解的存在性和唯一性定理。本章的主要结果是表明,如果我们有xDDt = f&parl0; t,xst&parr0;的上下解。较低的解决方案alpha(t)低于较高的解决方案beta(t),并且如果alpha(a)≤A≤beta(a)和alpha(sigma2(b))≤B≤beta(sigma2(b)),则我们边值问题有一个解决方案,并且该解决方案保持在alpha(t)和beta(t)之间。然后,我们使用这个结果来显示其他存在唯一性定理。在第3章的开头,我们关注证明时间尺度上指数函数的各种性质。本章的主要结果之一是完全确定该指数函数的符号。然后,它确定一阶线性齐次动力学方程及其伴随的振动性或非振荡性。在本章的最后一节中,我们推导了一个时标上的高阶线性动力学方程的特征方程,并给出了该动力学方程在时标上的振动准则。在第4章中,我们考虑了n阶线性动力学方程Pxt = S ni = 0pi tx&parl0; si t&parr0; = 0其中pi(t),0≤i≤n是在T上定义的实值函数。在本章中,我们仅考虑时间标度T,以使T中的每个点都被隔离。我们为该动力学方程定义柯西函数K(t,s),然后证明常数公式的变体。我们主要关注的问题之一是查看方程的Cauchy函数与算符P的分解部分的Cauchy函数之间的关系。最后,我们考虑方程Pxt = S ni = 0pix&parl0;。 sit&parr0; = 0,其中每个pi是常数,并获得柯西函数的公式。

著录项

  • 作者

    Akin, Elvan.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号