首页> 外文学位 >Design, fabrication, and optimization of quantum cascade laser cavities and spectroscopy of the intersubband gain.
【24h】

Design, fabrication, and optimization of quantum cascade laser cavities and spectroscopy of the intersubband gain.

机译:量子级联激光腔的设计,制造和优化以及子带间增益的光谱学。

获取原文
获取原文并翻译 | 示例

摘要

Quantum Cascade (QC) lasers are intersubband light sources operating in the wavelength range of ∼ 3 to 300 mum and are used in applications such as sensing (environmental, biological, and hazardous chemical), infrared countermeasures, and free-space infrared communications. The mid-infrared range (i.e. lambda ∼ 3-30 mum) is of particular importance in sensing because of the strong interaction of laser radiation with various chemical species, while in free space communications the atmospheric windows of 3-5 mum and 8-12 mum are highly desirable for low loss transmission. Some of the requirements of these applications include, (1) high output power for improved sensitivity; (2) high operating temperatures for compact and cost-effective systems; (3) wide tunability; (4) single mode operation for high selectivity. In the past, available mid-infrared sources, such as the lead-salt and solid-state lasers, were bulky, expensive, or emit low output power. In recent years, QC lasers have been explored as cost-effective and compact sources because of their potential to satisfy and exceed all the above requirements. Also, the ultrafast carrier lifetimes of intersubband transitions in QC lasers are promising for high bandwidth free-space infrared communication.;This thesis was focused on the improvement of QC lasers through the design and optimization of the laser cavity and characterization of the laser gain medium. The optimization of the laser cavity included, (1) the design and fabrication of high reflection Bragg gratings and subwavelength antireflection gratings, by focused ion beam milling, to achieve tunable, single mode and high power QC lasers, and (2) modeling of slab-coupled optical waveguide QC lasers for high brightness output beams. The characterization of the QC laser gain medium was carried out using the single-pass transmission experiment, a sensitive measurement technique, for probing the intersubband transitions and the electron distribution of QC lasers under different temperatures and applied bias conditions, unlike typical infrared measurement techniques that are restricted to non-functional devices. With the single-pass technique, basic understanding of the physics behind the workings of the QC laser gain can be achieved, which is invaluable in the design of QC lasers with high output power and high operating temperatures.
机译:量子级联(QC)激光器是在3到300 mum波长范围内工作的子带间光源,并用于传感(环境,生物和有害化学物质),红外对策和自由空间红外通信等应用中。由于激光辐射与各种化学物质之间的强烈相互作用,因此中红外范围(即λ〜3-30 mum)在传感中尤为重要,而在自由空间通信中,大气窗口为3-5 mum和8-12对于低损耗传输,非常需要妈妈。这些应用的一些要求包括:(1)高输出功率以提高灵敏度; (2)紧凑且经济高效的系统具有较高的工作温度; (3)可调性广; (4)单模操作具有高选择性。过去,可用的中红外光源(如铅盐和固态激光器)体积大,价格昂贵或发射功率低。近年来,由于QC激光器具有满足并超过所有上述要求的潜力,因此已被视为具有成本效益且结构紧凑的光源。此外,QC激光器中子带间跃迁的超快载波寿命对于高带宽自由空间红外通信是有希望的。;本论文的重点是通过对激光腔的设计和优化以及对激光增益介质的表征来改进QC激光器。 。激光腔的优化包括:(1)通过聚焦离子束铣削设计和制造高反射布拉格光栅和亚波长抗反射光栅,以实现可调谐,单模和高功率QC激光器,以及(2)平板建模耦合的光波导QC激光器用于高亮度输出光束。与典型的红外测量技术不同,QC激光增益介质的表征是使用单次透射实验(一种灵敏的测量技术)进行的,用于探测QC激光器在不同温度和施加偏置条件下的子带间跃迁和电子分布。仅限于非功能性设备。通过单次通过技术,可以基本了解QC激光器增益工作原理背后的物理原理,这在设计具有高输出功率和高工作温度的QC激光器时具有不可估量的价值。

著录项

  • 作者

    Dirisu, Afusat Olayinka.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 262 p.
  • 总页数 262
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号