首页> 外文学位 >Controlling light with high-Q silicon photonic crystal nanocavities: Photon confinement, nonlinearity and coherence.
【24h】

Controlling light with high-Q silicon photonic crystal nanocavities: Photon confinement, nonlinearity and coherence.

机译:使用高Q硅光子晶体纳米腔来控制光:光子限制,非线性和相干性。

获取原文
获取原文并翻译 | 示例

摘要

The strong light localization and long photon lifetimes in two-dimensional silicon photonic crystal nanocavities with high quality factor (Q ) and subwavelength modal volume (V) significantly enhance the light-matter interactions, presenting many opportunities to explore new functionalities in silicon nanophotonic integrated circuits for on-chip all-optical information processing, optical computation and optical communications. This thesis will focus on the design, nanofabrication, and experimental characterization of both passive and active silicon nanophotonic devices based on two-dimensional high-Q silicon photonic crystal nanocavities. Three topics of controlling light with these high-Q nanocavities will be presented, including (1) photon confinement mechanism and cavity resonance tuning, (2) enhancement of optical nonlinearities, and (3) all-optical analogue to coherent interferences.;The first topic is photon confinement in two-dimensional high- Q silicon photonic crystal nanocavities. In Chapter 2, the role of Q/V as the figure of merit for the enhanced light-matter interaction in optical microcavities and nanocavities is explained and different types of high-Q optical microcavities and nanocavities are reviewed with an emphasis on two-dimensional photonic crystal nanocavities. Then the nanofabrication process and the Q characterization are illustrated for the two-dimensional silicon photonic crystal nanocavities. In Chapter 3, the post-fabrication digital resonance tuning of high-Q silicon photonic crystal nanocavities using atomic layer deposition is proposed and demonstrated, with wide tuning range and precise control of cavity resonances while preserving high quality factors.;The second topic is the enhancement of optical nonlinearities in two-dimensional high-Q silicon photonic crystal nanocavities, including stimulated Raman scattering and thermo-optical nonlinearities. In Chapter 4, the enhanced stimulated Raman scattering for low threshold Raman lasing in the designed high-Q silicon photonic crystal nanocavities are proposed and numerically analyzed through the derived coupled-mode equations, with various contributions on Raman gain, optical losses, and dispersion effects. In Chapter 5, the observation of enhanced optical nonlinearities and optical bistabilities due to the two-photon-absorption induced thermo-optic effect in high-Q silicon photonic crystal nanocavities with both Lorentzian resonances and Fano resonances is presented. The experimental results highlight the ultra-low switching energy, high switching contrast, and the low threshold wavelength detuning for Fano resonances, benefiting from the sharp and asymmetric Fano lineshapes.;The third topic is all-optical analogue to coherent interference phenomena in atomic systems including Fano interference and electromagnetically induced transparency (EIT). In Chapter 5, the optical analogue to Fano interference is studied in an optical system consisting of a photonic crystal nanocavity side-coupled to a waveguide with two partially reflecting elements, where the coherent interference between the discrete energy state and the continuum will give sharp and asymmetric Fano lineshapes, which can be used for low-threshold optical bistable switching with a high switching contrast. In Chapter 6, another coherent interference phenomenon called electromagnetically induced transparency (EIT) is introduced. The deterministic tuning of all-optical analogue to EIT in coherently-coupled silicon photonic crystal nanocavities is demonstrated experimentally. Through thermo-optic tuning of wavelength detuning and phase difference between these coupled nanocavities, the stepwise control of the EIT-like coherent interference is realized. The designed EIT-like optical system is analyzed well through the coupled-mode equations. These results can be used for realization of all-optical stopping of light.
机译:具有高品质因数(Q)和亚波长模量(V)的二维硅光子晶体纳米腔体中的强光定位和长光子寿命显着增强了光物质相互作用,为探索硅纳米光子集成电路中的新功能提供了许多机会用于片上全光信息处理,光计算和光通信。本文将重点研究基于二维高Q硅光子晶体纳米腔的无源和有源硅纳米光子器件的设计,纳米加工和实验表征。将介绍使用这些高Q纳米腔控制光的三个主题,包括(1)光子限制机制和腔共振调谐,(2)增强光学非线性,以及(3)全光模拟到相干干涉。主题是将光子限制在二维高Q硅光子晶体纳米腔中。在第二章中,解释了Q / V作为光学微腔和纳米腔中增强的光-质相互作用的品质因数的作用,并综述了不同类型的高Q光学微腔和纳米腔,重点是二维光子学。晶体纳米腔。然后说明了二维硅光子晶体纳米腔的纳米制造过程和Q表征。在第3章中,提出并演示了利用原子层沉积对高Q硅光子晶体纳米腔进行制造后数字共振调谐的方法,该调谐范围宽,并且在保持高品质因数的同时精确控制腔共振;第二个主题是二维高Q硅光子晶体纳米腔中光学非线性的增强,包括受激拉曼散射和热光学非线性。在第4章中,提出了设计的高Q硅光子晶体纳米腔中用于低阈值拉曼激射的增强受激拉曼散射,并通过导出的耦合模式方程进行了数值分析,这对拉曼增益,光学损耗和色散效应都有不同的贡献。 。在第5章中,我们提出了在高Q硅光子晶体纳米腔中同时具有洛伦兹共振和法诺共振的双光子吸收引起的热光效应,从而增强了光学非线性和光学双稳态。实验结果突出了超低开关能量,高开关对比度和低阈值波长的Fano共振失谐现象,这得益于清晰和不对称的Fano线形。;第三个主题是原子系统中相干干涉现象的全光学模拟包括Fano干扰和电磁感应透明性(EIT)。在第5章中,在一个光学系统中研究了Fano干涉的光学类似物,该光学系统由一个光子晶体纳米腔侧耦合到一个带有两个部分反射元件的波导组成,其中离散能量状态和连续体之间的相干干涉将给出尖锐的非对称Fano线形,可用于具有高开关对比度的低阈值光学双稳态开关。在第6章中,介绍了另一个相干干扰现象,称为电磁感应透明性(EIT)。实验证明了在相干耦合的硅光子晶体纳米腔中全光学模拟物对EIT的确定性调谐。通过对这些耦合的纳米腔之间的波长失谐和相位差进行热光调谐,可以实现对EIT类相干干涉的逐步控制。通过耦合模方程很好地分析了设计的类EIT光学系统。这些结果可用于实现全光止光。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号