首页> 外文学位 >Nanoscale Engineering of Transition-Metal Chalcogenides/Hydroxides for Boosting Electrochemical Energy Storage.
【24h】

Nanoscale Engineering of Transition-Metal Chalcogenides/Hydroxides for Boosting Electrochemical Energy Storage.

机译:过渡金属硫属元素化物/氢氧化物的纳米级工程技术,可增强电化学储能。

获取原文
获取原文并翻译 | 示例

摘要

Rechargeable lithium ion batteries (LIBs), as one of the most important electrochemical energy storage (EES) devices, currently provide the dominant power source for a range of devices including portable electronic devices and electric vehicles due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability and low cycling stability, strongly limiting their practical applications. Recent remarkable advances in material sciences and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Herein we propose the Nanoscale Engineering of Transition--Metal Chalcogenides/Hydroxides for Boosting Electrochemical Energy Storage. This dissertation provides some successful examples in designing new electrode materials for boosting EES. It puts special emphasis on the design and engineering of novel heterostructured electrode materials with reduced size, large surfaces area, excellent electrical conductivity, structural stability, fast electron and ion transport, which necessarily lead to enhanced EES performance in terms of high capacity, long cycling lifespan, and high rate durability. These engineered nanomaterials mainly take advantages of (1) novel uninstructive and morphology with large surface area, short ion diffusion path such as Fe3O4 and Fe2O3 nanoparticles (Chapter 2 and 3), Co-Ni oxide or hydroxide nanosheets (Chapter 4 and 5), and MoS2 nanosheets assembly (Chapter 6); (2) supporting carbon materials with intrinsic high electronic conductivity, high stability, tunable carbon porosity such as Fe 3O4 embedded in carbon matrix (Chapter 2), rGO wrapped Fe 2O3 nanoparticles (Chapter 3) and porous carbon bridged MoS 2 nanosheets (Chapter 6); (3) conducting polymer featuring with feasibility, light weight, large capacitance, good electric conductivity, ease of synthesis and low cost (Chapter 3); (4) special hybrid transition-metal compounds with synergistic effect from both components and offering better electrochemical properties over their single counterpart (Chapter 4). Nevertheless, these strategies may at the same time suffer from certain drawbacks pointed out in different chapters, bringing us with sophisticated challenges.
机译:可充电锂离子电池(LIB)作为最重要的电化学能量存储(EES)设备之一,由于其高能量和功率密度,目前为包括便携式电子设备和电动汽车在内的一系列设备提供了主要电源。由于对清洁能源的需求激增,对探索用于LIB的新型电极材料的兴趣急剧增加。然而,对于电极材料的开发必不可少的挑战性问题是它们的低锂容量,差的倍率能力和低循环稳定性,这严重限制了它们的实际应用。材料科学和纳米技术方面的最新显着进步使合理设计具有最佳组成和精细纳米结构的异质结构纳米材料成为可能,从而为增强电化学性能提供了新的机会。本文中,我们提出了过渡金属纳米级硫化物/氢氧化物的纳米级工程技术,以促进电化学能量存储。本论文为设计新型电极材料提供了成功的实例。它特别注重新颖的异质结构电极材料的设计和工程,这些材料具有减小的尺寸,大的表面积,出色的导电性,结构稳定性,快速的电子和离子传输能力,因此必然在高容量,长循环方面提高EES性能寿命长,耐久性高。这些工程纳米材料的主要优点是:(1)具有大表面积的新颖无指导性和形态,短的离子扩散路径(例如Fe3O4和Fe2O3纳米粒子)(第2和3章),Co-Ni氧化物或氢氧化物纳米片(第4和5章), MoS2纳米片组装(第6章); (2)支持具有固有高电导率,高稳定性,可调碳孔隙率的碳材料,例如嵌入碳基质中的Fe 3O4(第2章),rGO包裹的Fe 2O3纳米颗粒(第3章)和多孔碳桥连的MoS 2纳米片(第6章) ); (3)具有可行性,重量轻,电容量大,导电性好,易于合成,成本低的导电聚合物(第三章); (4)特殊的杂化过渡金属化合物,在两种组分中均具有协同作用,并且比它们的单一同类物具有更好的电化学性能(第4章)。然而,这些策略可能同时遭受不同章节所指出的某些弊端,给我们带来了复杂的挑战。

著录项

  • 作者

    Chen, Gen.;

  • 作者单位

    New Mexico State University.;

  • 授予单位 New Mexico State University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号