首页> 外文学位 >Subwavelength-scale light localization in complete photonic bandgap materials.
【24h】

Subwavelength-scale light localization in complete photonic bandgap materials.

机译:完整光子带隙材料中的亚波长尺度光定位。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this dissertation work is to examine light localization in semiconductors provided by a complete photonic bandgap via three-dimensional (3D) woodpile photonic crystals. A 3D photonic crystal is a periodic nanostructure that demonstrates omni-directional Bragg reflection. These materials are anticipated to become a powerful tool for engineering light propagation and localization within subwavelength scales due to their complete photonic bandgap and the distinctive dispersion relation.;The approach of realizing microcavities in this dissertation is to combine multi-directional etching fabrication methods with mode gap design. Modulation of unit cell size along a line-defect 3D waveguide could bring a guiding mode into the mode gap region of the waveguide and form a microcavity with a resonance inside the complete photonic bandgap. The designed microcavities could be fabricated by multi-directional etching methods because they can structurally be decomposed into two sets of connected and straight dielectric rods.;Ultra-high-quality factor microcavities and sub-wavelength-scale waveguides are designed without introduction of local disorders. Monopole, dipole, and quadrupole resonant modes are demonstrated with a small modal volume. The smallest modal volumes obtained are 0.36 cubic half-wavelengths for a resonance field in vacuum, and 2.88 cubic half-wavelengths for a resonance field in a dielectric. Direct metal contacts with the microcavities do not significantly deteriorate the quality factors because the resonant fields are located inside the microcavities. Single-mode woodpile waveguides are also designed in both lateral and vertical propagation directions.;The multi-directional etching method is a simple approach to the fabrication of woodpile photonic crystals and designed optical components with a variety of crystal orientations and surfaces, including (110), (001), (100), and (010) planes. An arbitrary surface plane (mn0) is obtained with this method, where m and n are integers. Moreover, it can also produce large area woodpile photonic crystals with high precision in silicon and GaAs materials.;These optical components in woodpile photonic crystals would be building blocks of high-density, low-loss 3D integrated optics, cavity quantum electrodynamics (QED), nonlinear optics, and enable the realization of current-injection optical devices.
机译:本论文的目的是研究通过完整的光子带隙通过三维(3D)木桩光子晶体提供的半导体中的光定位。 3D光子晶体是周期性的纳米结构,具有全向布拉格反射。这些材料由于其完整的光子带隙和独特的色散关系,有望成为在亚波长范围内工程光传播和定位的有力工具。本论文中实现微腔的方法是将多方向刻蚀制造方法与模式相结合。间隙设计。沿着线缺陷3D波导的单位晶胞尺寸的调制可能将引导模式带入波导的模隙区域,并在整个光子带隙内部形成共振的微腔。设计的微腔可以通过多方向蚀刻方法制造,因为它们可以在结构上分解为两组相连的直电介质棒。;设计了超高质量因子微腔和亚波长尺度的波导,而不会引入局部无序。单极,偶极和四极共振模式的模态体积较小。对于真空中的共振场,获得的最小模态体积为0.36立方半波长,而对于电介质中的共振场,则为2.88立方半波长。金属与微腔的直接接触不会显着降低品质因数,因为共振场位于微腔内部。单模柴堆波导还可以在横向和垂直传播方向上进行设计;多方向蚀刻法是一种简单的方法来制造柴堆光子晶体,并设计了具有多种晶体取向和表面的光学组件,包括(110 ),(001),(100)和(010)平面。使用此方法可获得任意表面(mn0),其中m和n为整数。此外,它还可以在硅和GaAs材料中生产高精度的大面积木桩光子晶体。;木桩光子晶体中的这些光学组件将成为高密度,低损耗3D集成光学器件,腔量子电动力学(QED)的基础非线性光学,并实现电流注入光学器件的实现。

著录项

  • 作者

    Tang, Lingling.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号