首页> 外文学位 >Matrix-free linear system solving and applications to symbolic computation.
【24h】

Matrix-free linear system solving and applications to symbolic computation.

机译:无矩阵线性系统求解及其在符号计算中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis investigates the solution of large, sparse, linear systems over finite fields by matrix-free algorithms. A matrix-free algorithm treats the coefficient matrix as a black box and requires a technique to apply the matrix to a vector. The components of the matrix are never directly addressed or changed. Hence structural properties such as sparseness become unimportant.; We studied the block Wiedemann algorithm due to Coppersmith and implemented it after parallelizing the output loop, in a distributed setting as an SPMD computation. We developed three complete differently-optimized solvers, for computing in GF(2), in GF(p) where p is a prime representable in less than 16 binary digits, and in GF(q) where q can be of arbitrary length. We conducted detailed investigations of their performance. Two of the largest systems solved are a system of 569,00 equations over GF(2), in 332 hours on 2 computers; and a system of 20,000 equations over GF(32749), in 28.5 hours using 8 computers.; We designed the Black Box Berlekamp algorithm for the factorization of high-degree polynomials over finite fields. A key component of our algorithm is a matrix-free linear system solver based upon the Block Wiedemann algorithm. We have written a complete software package in C++ using a library of classes for fast polynomial arithmetic. In our algorithm the coefficient matrix is never instantiated and the matrix times vector product is effected by the modular exponentiation of polynomials. These features make it possible for us to factor polynomials of higher degree than hitherto possible. Our algorithm works best for high degree polynomials with coefficients from fields of small cardinality. We have factored polynomials of degree as large as 15001 in the field GF(127).; Our experiments with the Block Wiedemann Algorithm supply strong evidence for its success over finite fields of small cardinality. The only existing probabilistic analysis, by Kaltofen, is valid for large fields only.; Seeking the probability of success in small fields, we considered an intermediate subproblem of the Block Wiedemann algorithm involving the solution of a system of equations having Toeplitz structure. We examined, in particular, the condition that the leading principal minors of the coefficient matrix up to dimension equal to the rank of the original matrix must be nonzero. Randomly generated matrices having Toeplitz structure themselves can be used to precondition the given Toeplitz system so as to give it such a generic rank profile.; We have proven that an n x n Toeplitz matrix whose first row and column are chosen uniformly at random from the elements of a field of q elements, has generic rank {dollar}r < n{dollar} with probability {dollar}(1/q)(1 - 1/q)sp2(1 - (q -1)/qsp2)sp{lcub}r-1{rcub}.{dollar} Using concepts from the theory of subresultants and Pade approximants we also proved that there are {dollar}(q - 1)qsp{lcub}n-2{rcub}{dollar} non-singular order-n Toeplitz matrices over GF(q). From this it follows that a random Toeplitz matrix is non-singular with probability {dollar}1-1/q{dollar}. (Abstract shortened by UMI.)
机译:本文研究了无矩阵算法在有限域上求解大型稀疏线性系统的方法。无矩阵算法将系数矩阵视为黑盒,并且需要一种将矩阵应用于矢量的技术。矩阵的组成部分永远不会直接寻址或更改。因此,诸如稀疏之类的结构特性变得不重要。我们研究了由于Coppersmith而产生的块Wiedemann算法,并在将输出循环并行化之后以SPMD计算的分布式设置将其实现。我们开发了三个完整的不同优化的求解器,分别用于GF(2),GF(p)(其中p是少于16个二进制数字表示的素数)和GF(q)(其中q可以是任意长度)中的计算。我们对其性能进行了详细的调查。解决的两个最大的系统是在2台计算机上在332小时内在GF(2)上有569,00个方程的系统;并在28.5小时内使用8台计算机在GF(32749)上建立了20,000个方程的系统;我们设计了Black Box Berlekamp算法,用于有限域上的高阶多项式的因式分解。我们算法的关键部分是基于Block Wiedemann算法的无矩阵线性系统求解器。我们已经使用类库进行了快速多项式运算,并使用C ++编写了完整的软件包。在我们的算法中,系数矩阵永远不会被实例化,矩阵乘以矢量乘积会受到多项式的模幂运算的影响。这些特征使我们可以分解比迄今为止更高阶的多项式。我们的算法最适合于具有小基数字段系数的高阶多项式。在域GF(127)中,我们已经分解了一个多项式,其阶数最大为15001。我们的Block Wiedemann算法实验为它在小基数有限域上的成功提供了有力的证据。 Kaltofen唯一现有的概率分析仅对大字段有效。在小领域中寻求成功的可能性,我们考虑了Block Wiedemann算法的一个中间子问题,该问题涉及具有Toeplitz结构的方程组的求解。我们特别检查了以下条件:系数矩阵的前导主要次要维度必须等于非原始矩阵的秩,并且维度必须等于零。本身具有Toeplitz结构的随机生成的矩阵可用于对给定的Toeplitz系统进行预处理,以使其具有这种通用的秩分布。我们已经证明了一个nxn Toeplitz矩阵,其第一行和第一列是从q个元素的字段中的元素中随机选择的,其通用等级{dollar} r

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号