首页> 外文学位 >Development of a response factor approach for modeling the energy effects of combined heat and mass transfer with vapor adsorption in building elements.
【24h】

Development of a response factor approach for modeling the energy effects of combined heat and mass transfer with vapor adsorption in building elements.

机译:开发了一种响应因子方法,用于对建筑构件中的热量和质量传递与蒸汽吸附相结合的能量效应进行建模。

获取原文
获取原文并翻译 | 示例

摘要

High humidity levels in a building adversely affect occupant comfort, and air conditioning equipment performance. In many situations condensation can lead to damage of materials in storage through corrosion, deterioration, and other destructive processes. Other detrimental effects from high indoor moisture levels are growth of mold, mildew, and deterioration of building materials. Most building materials like concrete, wood, wall finishes, etc., are porous materials. In porous materials, moisture tends to migrate to the cooler material side under the influence of a temperature gradient. This can occur through a process of evaporation, vapor flow, liquid flow, and condensation in the material. The heat transmission process through moist materials is very complex whenever there is appreciable moisture migration. Under these conditions, calculation of heat transfer with heat conduction theory alone is just an approximation.; Air conditioning systems can rapidly remove stored moisture in the zone air, but removing the adsorbed moisture in the building elements, furniture, window treatments, etc., often accounts for a significant fraction of the overall cooling load, especially upon starting the system after a shut-down period. To determine the contribution of the moisture capacitance in the building, an analysis that takes into account simultaneous diffusion of heat and mass in the building elements is required.; The thesis used the Evaporation-Condensation theory to develop and implement combined heat and mass transfer models with vapor adsorption using moisture transfer functions (MTF's) in an existing hourly energy analysis building simulation program, Integrated Building Load Analysis & System Thermodynamic (IBLAST). The analysis takes into account the vapor adsorption/desorption, and diffusion in composite building elements. Vapor adsorption is one of the primary parameters that couples the mass and energy equations and is crucial for interactions between the mass and heat equations. The model is capable of analyzing the entire building (not just one building element) with moisture effects for a Design Day or an entire year, with an hourly simulation. The development and implementation of these algorithms in the IBLAST program will advance the energy analysis technology to the next level, but still maintain a simulation with a reasonable execution time.
机译:建筑物中的高湿度会对乘员的舒适度和空调设备性能产生不利影响。在许多情况下,凝结会由于腐蚀,变质和其他破坏性过程而导致存储材料损坏。室内高水分含量的其他有害影响是霉菌的生长,发霉和建筑材料的劣化。大多数建筑材料(例如混凝土,木材,墙壁饰面等)是多孔材料。在多孔材料中,水分倾向于在温度梯度的影响下迁移到较冷的材料侧。这可以通过材料中的蒸发,蒸气流,液体流和冷凝过程发生。每当有明显的水分迁移时,通过潮湿材料的传热过程就非常复杂。在这种情况下,仅用热传导理论来计算传热就只是一个近似值。空调系统可以迅速去除区域空气中存储的水分,但是去除建筑元素,家具,窗户装饰等中吸附的水分通常占整体制冷负荷的很大一部分,尤其是在空调系统启动后,停工期。为了确定建筑物中湿气电容的作用,需要进行分析,同时考虑建筑物构件中热量和质量的同时扩散。本文利用蒸发-冷凝理论,在现有的每小时能源分析建筑模拟程序集成建筑负荷分析与系统热力学(IBLAST)中,开发并实现了利用水分传递函数(MTF)进行蒸汽吸附的传热传质模型。该分析考虑了蒸汽在复合建筑构件中的吸附/解吸和扩散。蒸气吸附是耦合质量和能量方程的主要参数之一,对于质量和热方程之间的相互作用至关重要。该模型能够每小时设计一次,从而分析整个建筑(不仅是一个建筑元素)在设计日或全年的湿度影响。这些算法在IBLAST程序中的开发和实现将把能量分析技术提升到一个新的水平,但是仍然可以在合理的执行时间下保持仿真。

著录项

  • 作者

    Liesen, Richard John.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Mechanical.; Engineering Heat and Thermodynamics.; Engineering Civil.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;能源与动力工程;建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号