首页> 外文学位 >An adaptive vortex method for two-dimensional viscous and incompressible flows.
【24h】

An adaptive vortex method for two-dimensional viscous and incompressible flows.

机译:二维粘性和不可压缩流的自适应涡旋方法。

获取原文
获取原文并翻译 | 示例

摘要

The thesis is centered around an adaptive method for calculating vorticity dominated flows in two dimensions. We use the vortex method after a general transformation is applied to the flow region because the vortex elements describe the local flow more accurately if the transformation is suitably chosen. A good example of this is boundary layer flow, where vortex sheets serve to represent the vorticity as long as the Prandtl equation holds, but the method is inaccurate in the region where transition from Prandtl to fall Navier-Stokes equations occurs. Physical intuition tells us that the transition should be a natural process and therefore should be smooth, depending fully on the local flow and geometry. It is shown that this can be realized with a good spatial transformation which takes account of the above factors. In the special case of finite area vortex regions and within 1st order accuracy the Biot-Savart law is explicit and equivalent to the elliptic vortex method with the axes ratio and orientation evolving according to the continuous transformation. The transformation is obtained from the real flow by averaging, truncation and satisfying the same boundary condition as the real flow. Some experiments for typical flows are carried out in detail. We also modeled a two-dimensional, dilute fluid-particle system with low Reynolds number flow around cylindrical particles and high Reynolds number with respect to the bulk flow. Full particle methods are used to solve both the fluid and particle phase flows. The vortex method is used for the nearly incompressible fluid phase. The compressible particle phase is taken care of by using Voronoi diagrams suitably. On the microscopic scale the Stokes-Oseen formula is used to represent the forces on particles. Interactions between the two phases lead to fluid vorticity creation from the particles and drift of particles forced by the fluid. Numerical examples compare well with some experimental results.
机译:本文围绕一种在二维中计算涡度主导流的自适应方法展开研究。在将通用变换应用于流区域之后,我们使用涡旋方法,因为如果适当选择了变换,则涡旋元素会更准确地描述局部流。边界层流动就是一个很好的例子,只要Prandtl方程成立,涡流片就可以代表涡度,但是这种方法在从Prandtl过渡到下降的Navier-Stokes方程的区域不准确。物理直觉告诉我们,过渡应该是自然过程,因此应该平稳,这完全取决于局部流动和几何形状。结果表明,考虑到上述因素,可以通过良好的空间变换来实现。在有限区域涡旋区域且在一阶精度内的特殊情况下,毕奥-萨伐尔定律是明确的,等效于椭圆涡旋法,其轴比和方向根据连续变换而变化。通过平均,截断并满足与实际流相同的边界条件,从实际流获得变换。详细地进行了一些典型流程的实验。我们还建模了一个二维的稀流体颗粒系统,该系统在圆柱状颗粒周围具有低雷诺数,相对于整体流具有高雷诺数。全粒子方法用于求解流体和粒子相流。涡旋法用于几乎不可压缩的流体相。通过使用Voronoi图适当地处理可压缩颗粒相。在微观尺度上,Stokes-Oseen公式用于表示作用在颗粒上的力。两相之间的相互作用导致粒子产生流体涡旋,并导致流体推动粒子漂移。数值示例与一些实验结果进行了比较。

著录项

  • 作者

    Zhu, Jingyi.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号