首页> 外文学位 >Hydrodynamic design of multiphase bubble column reactors: An experimental and theoretical study.
【24h】

Hydrodynamic design of multiphase bubble column reactors: An experimental and theoretical study.

机译:多相鼓泡塔反应器的流体力学设计:一项实验和理论研究。

获取原文
获取原文并翻译 | 示例

摘要

An understanding of three phase flow hydrodynamics and flow pattern are necessary for the design and scaleup of bubble column reactors. Gas phase residence time is an important parameter that depends on superficial gas velocity and gas holdup in the bubble column. There was no study reported in the literature on residence time in multiphase bubble columns. Since residence time can be easily determined from gas holdup measurements, and can be visualized in terms of the variables of the bubble column reactor, it will give a better understanding of reactor hydrodynamics. The study of porous plate gas distributors is important because of their improved hydrodynamic performance.; This work emphasized the study of three phase flow hydrodynamics including flow patterns and holdup of three phases and gas phase residence time. The effects of solid particle size, solid concentration, density of solids, viscosity of slurry, gas distributor and column diameter and height on hydrodynamics were studied.; The key findings of the effect of solids on gas holdup is that gas holdup increases with increasing solids concentration up to approximately three weight percent. As solid concentration increases further gas holdup steadily decreases. The residence time distribution using solids showed the same shape as in two phase flow for solid concentrations up to ten weight percent. Beyond ten weight percent, the shape of the residence time curve using a porous plate gas distributor is similar to that of sieve plate due to rapid coalescence of gas bubbles right at the gas distributor.; Both linear and non linear regression analysis were performed on gas holdup and residence time as a function of superficial gas velocity and other variables in all three flow patterns. In our region of interest gas velocity, gas distributor and solid concentration are the most important variables.; The outcome of this research will yield a better understanding of residence time, interfacial area, and the transition from one flow pattern to another in the operating region of interest to direct coal liquefaction reactors. Improved design techniques will allow more accurate prediction of the height and diameter of coal liquefaction bubble column reactors.
机译:对于气泡塔反应器的设计和规模化,必须了解三相流的流体力学和流型。气相停留时间是一个重要参数,取决于表观气体速度和鼓泡塔中的气体滞留量。文献中没有关于在多相鼓泡塔中停留时间的报道。由于可以很容易地从气体滞留量中确定停留时间,并且可以根据鼓泡塔反应器的变量对其进行可视化,因此可以更好地理解反应器的流体动力学。多孔板式气体分配器的研究具有重要意义,因为它们改善了流体力学性能。这项工作着重研究了三相流流体力学,包括流型,三相滞留率和气相停留时间。研究了固体粒径,固体浓度,固体密度,浆液粘度,气体分布器以及塔的直径和高度对流体力学的影响。固体对气体滞留量影响的主要发现是,气体滞留量随着固体浓度增加到大约3%(重量)而增加。随着固体浓度的增加,进一步的气体滞留率稳步下降。对于固体浓度不超过10%的重量,使用固体的停留时间分布显示出与两相流相同的形状。超过百分之十的重量百分比,使用多孔板气体分配器的停留时间曲线的形状类似于筛板,这是因为气泡在气体分配器处迅速聚结。线性和非线性回归分析都针对气体滞留和停留时间进行了分析,这是所有三种流型中表观气体速度和其他变量的函数。在我们感兴趣的区域中,气体速度,气体分配器和固体浓度是最重要的变量。这项研究的结果将使人们更好地了解停留时间,界面面积以及在感兴趣的运行区域中从一种流态向另一种流态过渡到直接煤液化反应器的过程。改进的设计技术将可以更准确地预测煤液化鼓泡塔反应器的高度和直径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号