首页> 外文学位 >GUIDED MODES IN ANISOTROPIC DIELECTRIC PLANAR WAVEGUIDES (OPTICS).
【24h】

GUIDED MODES IN ANISOTROPIC DIELECTRIC PLANAR WAVEGUIDES (OPTICS).

机译:各向异性电平面波导管(光学)中的导引模式。

获取原文
获取原文并翻译 | 示例

摘要

Integrated optics, driven by the need for high-speed, high-volume signal processing, has made significant progress. However device development has been limited by a lack of fundamental understanding in many areas. The anisotropic characteristics of propagation in dielectric waveguides represent such an area in need of basic research. Integrated optical devices employ anisotropic materials because of their useful characteristics such as low loss and large electro-optic, photoelastic, and photorefractive effects. The anisotropic nature of the waveguide have been ignored. However due to the anisotropy, for example, the guided modes are neither transverse electric (TE) nor transverse magnetic (TM) modes but are hybrid in general, and the phase propagation direction and power propagation direction do not necessarily coincide.;A more complete understanding of the propagation of modes in anisotropic waveguides is obtained by allowing an arbitrary optic axis orientation in the analysis of a three-layer step-index uniaxial waveguiding structure. Hybrid guided modes can be divided into three types: homogeneous pure guided, inhomogeneous pure guided, and leaky guided modes. Pure guided modes propagate without loss, whereas leaky guided modes are attenuated. In this thesis the conditions for the existence of pure guided and leaky guided modes in uniaxial waveguides are presented. The cutoff conditions for guided modes in uniaxial waveguides are discussed. Rigorous methods are presented to calculate the propagation constants, field distributions, and power flow directions of pure guided modes. A quantitative method of classifying each mode is introduced that is based on the guided mode propagation constant bands. Each mode is labeled in terms of the limiting optic axis (
机译:在对高速,大容量信号处理的需求的推动下,集成光学已经取得了长足的进步。但是,由于缺乏许多领域的基本知识,设备开发受到了限制。介质波导中传播的各向异性特性代表了需要基础研究的领域。集成光学器件采用各向异性材料,因为它们具有有用的特性,例如低损耗和大的电光,光弹性和光折射效应。波导的各向异性本质已被忽略。但是,由于各向异性,例如,引导模式既不是横向电(TE)模式也不是横向磁(TM)模式,而是通常是混合模式,并且相位传播方向和功率传播方向不一定重合。通过在三层阶跃折射率单轴波导结构的分析中允许任意光轴方向,可以获得对各向异性波导中模式传播的理解。混合引导模式可以分为三种:同质纯引导,不均匀纯引导和泄漏引导模式。纯引导模式无损失地传播,而泄漏引导模式被衰减。本文提出了单轴波导中存在纯导模和漏导模的条件。讨论了单轴波导中导模的截止条件。提出了严格的方法来计算纯导模的传播常数,场分布和能流方向。引入了一种基于引导模式传播常数波段对每种模式进行分类的定量方法。每种模式均以极限光轴标记(

著录项

  • 作者

    KNOESEN, ANDRE.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号