首页> 外文学位 >Bessel beams in tunable acoustic gradient index lenses and optical trap assisted nanolithography.
【24h】

Bessel beams in tunable acoustic gradient index lenses and optical trap assisted nanolithography.

机译:可调谐声梯度指数透镜和光阱辅助纳米光刻技术中的贝塞尔光束。

获取原文
获取原文并翻译 | 示例

摘要

Bessel beams are laser beams whose shape gives them nondiffracting and self-healing properties. They find use in applications requiring a narrow laser beam with a high depth of field. The first part of this thesis presents the study of a new adaptive optical element capable of generating rapidly tunable Bessel beams: the tunable acoustic gradient index (TAG) lens. This device uses piezoelectrically-generated acoustic waves to modulate a fluid's density and refractive index, leading to electrically controllable lensing behavior. Both modeling and experiment are used to explain the observed multiscale Bessel beams. Because the TAG lens operates at frequencies of hundreds of kilohertz, the effective Bessel beam cone angle continuously varies at timescales on the order of microseconds or smaller-orders of magnitude faster than other existing technologies. In addition, the TAG lens may be driven with a Fourier superposition of multiple frequencies, which could enable the generation of arbitrary patterns.;The second part of this thesis presents the application of Bessel beams in a new probe-based direct-write optical nanolithography method called optical trap assisted nanolithography (OTAN). When compared to alternative techniques, OTAN makes probe placement and parallelization easier. The method uses Bessel beam optical tweezers to trap dielectric microspheres in close proximity to a surface. These microspheres are then illuminated with pulses from a second laser beam, whose fluence is enhanced directly below the microsphere by focusing and near-field effects to a level great enough to modify the substrate. This technique is used to produce 100 nm features, which are less than lambda/3, and whose sizes agree well with finite-difference time-domain models of the experiment. A demonstration is given of how the technique can be parallelized by trapping multiple microspheres with multiple beams and exposing all spheres in unison with a single pulsed beam. Finally, modeling and experimental measurements of the trapping and colloidal forces in the system that limit positional accuracy are presented.
机译:贝塞尔光束是激光束,其形状赋予它们无衍射和自愈特性。它们可用于需要高景深的窄激光束的应用中。本文的第一部分介绍了一种新型的自适应光学元件的研究,该元件能够产生快速可调的贝塞尔光束:可调声梯度指数(TAG)透镜。该设备使用压电产生的声波来调节流体的密度和折射率,从而实现电可控的透镜行为。建模和实验都用于解释观察到的多尺度贝塞尔光束。因为TAG透镜的工作频率为几百千赫兹,所以有效的贝塞尔光束锥角在时间尺度上连续变化,其变化速度比其他现有技术要快几微秒或更小数量级。另外,TAG透镜可以用多个频率的傅立叶叠加来驱动,这可以生成任意图案。本论文的第二部分介绍了贝塞尔光束在新型基于探针的直接写入光学纳米光刻技术中的应用。称为光阱辅助纳米光刻(OTAN)的方法。与其他技术相比,OTAN使探头放置和并行化更加容易。该方法使用贝塞尔光束光镊子将电介质微球捕获到非常靠近表面的位置。然后用来自第二激光束的脉冲照射这些微球,通过聚焦和近场效应,其通量直接在微球的下方增强,其程度足以修饰基板。该技术用于产生小于λ/ 3的100 nm特征,并且其尺寸与实验的有限差分时域模型非常吻合。演示了如何通过捕获具有多个光束的多个微球并以单个脉冲光束一致地曝光所有球来并行化该技术。最后,提出了限制位置精度的系统中胶体和胶体力的建模和实验测量。

著录项

  • 作者

    McLeod, Euan.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号