首页> 外文学位 >Control Methods for Powered Assistive Devices for Individuals with Mobility Impairments: Compensating for Disrupted Physiological Control Loops.
【24h】

Control Methods for Powered Assistive Devices for Individuals with Mobility Impairments: Compensating for Disrupted Physiological Control Loops.

机译:行动不便人士电动辅助设备的控制方法:补偿生理控制回路中断的情况。

获取原文
获取原文并翻译 | 示例

摘要

This document summarizes the research that I have completed at the Center for Intelligent Mechatronics between August, 2008 and June, 2014. The presented work is by no means achieved on my own, but is rather a part of collective effort by a group of researchers at the center lead by Dr. Michael Goldfarb, who has made significant contributions to the field of assistive and rehabilitative robotics. My work has focused on the control of assistive devices for individuals with limb amputations and spinal cord injuries. This chapter describes the motivation behind this work, followed by a brief overview of the physiology behind the control of human movement in terms of neural science and physiological control loops.;The remaining chapters consist of published (or soon to be published) works describing the specific control methods and their implementation. Chapter II describes the use of pattern recognition of physiological signals for volitional control of powered prostheses. This manuscript was published in the IEEE Transactions on Biomedical Engineering. Chapter III describes the implementation of a dynamic step trigger within a finite-state control structure that improves the walking speed of a powered lower limb exoskeleton for individuals with paraplegia. This manuscript is ready to be submitted to a journal to be determined. Chapter IV describes the use of a cooperative control method for a system consisting of paralyzed muscles activated by functional electrical stimulation (FES) and powered lower limb exoskeletons for gait restoration in paraplegic individuals. This manuscript has been accepted for publication in the IEEE Transactions on Neural Systems and Rehabilitation Engineering.
机译:本文档总结了我在2008年8月至2014年6月间在智能机电一体化中心完成的研究。所提出的工作绝不是我自己完成的,而是一部分研究人员集体努力的一部分。该中心由迈克尔·戈德法布(Michael Goldfarb)博士领导,他在辅助和康复机器人领域做出了重要贡献。我的工作主要集中在肢体截肢和脊髓损伤患者的辅助设备的控制上。本章描述了这项工作的动机,然后从神经科学和生理学控制回路的角度简要概述了人类运动控制背后的生理学;其余各章包括已发表(或即将发表)的著作,描述了具体的控制方法及其实现。第二章介绍了使用生理信号的模式识别来主动控制动力假体。该手稿发表在IEEE Transactions on Biomedical Engineering上。第三章介绍了在有限状态控制结构中实现动态步进触发器的方法,该结构可提高截瘫患者下肢动力外骨骼的行走速度。该手稿已准备好提交至待确定的期刊。第四章介绍了协作控制方法在系统中的用途,该系统由功能性电刺激(FES)激活的瘫痪肌肉和下肢外骨骼动力骨骼在截瘫患者的步态恢复中使用。该手稿已被接受在《神经系统与康复工程的IEEE交易》上发表。

著录项

  • 作者

    Ha, Kevin H.;

  • 作者单位

    Vanderbilt University.;

  • 授予单位 Vanderbilt University.;
  • 学科 Mechanical engineering.;Neurosciences.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号