首页> 外文学位 >Development and Evaluation of Active Thermal Management System for Lithium-Ion Batteries using Solid-State Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications.
【24h】

Development and Evaluation of Active Thermal Management System for Lithium-Ion Batteries using Solid-State Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications.

机译:使用固态热电热泵和电动汽车用热管的锂离子电池主动热管理系统的开发和评估。

获取原文
获取原文并翻译 | 示例

摘要

Lithium-Ion batteries have become a popular choice for use in energy storage systems in electric vehicles (EV) and Hybrid electric vehicles (HEV) because of high power and high energy density. But the use of EV and HEV in all climates demands for a battery thermal management system (BTMS) since temperature effects their performance, cycle life and, safety. Hence the BTMS plays a crucial role in the performance of EV and HEV. In this paper, three thermal management systems are studied: (a) simple aluminum as heat spreader material, (b) heat pipes as heat spreader, and (c) advanced combined solid state thermoelectric heat pump (TE) and heat pipe system; these will be subsequently referred to as Design A, B and C, respectively. A detailed description of the designs and the experimental setup is presented. The experimental procedure is divided into two broad categories: Cooling mode and Warming-up mode. Cooling mode covers the conditions when a BTMS is responsible to cool the battery pack through heat dissipation and Warming-up mode covers the conditions when the BTMS is responsible to warm the battery pack in a low temperature ambient condition, maintaining a safe operating temperature of the battery pack in both modes. The experimental procedure analyzes the thermal management system by evaluating the effect of each variable like heat sink area, battery heat generation rate, cooling air temperature, air flow rate and TE power on parameters like maximum temperature of the battery pack (T max), maximum temperature difference (DeltaT) and, heat transfer through heat sink/cooling power of TE (Q c). The results show that Design C outperforms Design A and Design B in spite of design issues which reduce its efficiency, but can still be improved to achieve better performance.
机译:由于高功率和高能量密度,锂离子电池已成为在电动汽车(EV)和混合电动汽车(HEV)的能量存储系统中使用的流行选择。但是,在任何气候下使用EV和HEV都需要电池热管理系统(BTMS),因为温度会影响其性能,循环寿命和安全性。因此,BTMS在EV和HEV的性能中起着至关重要的作用。本文研究了三种热管理系统:(a)以铝为简单的散热器材料;(b)以热管为散热器;(c)先进的组合式固态热电热泵(TE)和热管系统;这些分别称为设计A,设计B和设计C。介绍了设计和实验装置的详细说明。实验过程分为两大类:冷却模式和预热模式。冷却模式涵盖了BTMS负责通过散热来冷却电池组的情况,而暖机模式涵盖了BTMS负责在低温环境下加热电池组并维持电池组安全工作温度的条件。两种模式下的电池组。实验程序通过评估每个变量(如散热器面积,电池热量产生率,冷却空气温度,空气流速和TE功率)对诸如电池组最高温度(T max),最高温度等参数的影响来分析热管理系统温度差(DeltaT),以及通过散热器的散热/ TE的冷却功率(Q c)。结果表明,尽管存在一些设计问题,但设计C的性能仍然优于设计A和设计B,尽管它们会降低效率,但仍可以进行改进以实现更好的性能。

著录项

  • 作者

    Parekh, Bhaumik Kamlesh.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Mechanical engineering.;Materials science.;Automotive engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号