首页> 外文学位 >Biosynthesis and incorporation of non-proteinogenic amino acids into non-ribosomal peptide natural products.
【24h】

Biosynthesis and incorporation of non-proteinogenic amino acids into non-ribosomal peptide natural products.

机译:非蛋白质氨基酸的生物合成和掺入非核糖体肽天然产物。

获取原文
获取原文并翻译 | 示例

摘要

Complex and unique enzymology is often behind the biosynthesis of natural products. This thesis is focused on how non-proteinogenic amino acids are biosynthesized and then incorporated into natural products. Chapters two, three and four deal with a unique dioxygenase found in vancomycin biosynthesis. Chapter five elaborates on the biochemical characterization along with efforts toward structural characterization of a terminal non-ribosomal peptide synthetase module.;The vancomycin biosynthetic enzyme DpgC belongs to a small class of oxygenation enzymes that are not dependent on an accessory cofactor or metal ion. The detailed mechanism of cofactor-independent oxygenases has not been established. We have solved the first structure of an enzyme of this oxygenase class complexed with a bound substrate mimic. The use of a designed, synthetic substrate analog allows unique insights into the chemistry of oxygen activation. The structure confirms the absence of cofactors, and electron density consistent with molecular oxygen is present adjacent to the site of oxidation on the substrate. Molecular oxygen is bound in a small hydrophobic pocket and the substrate provides the reducing power to activate oxygen for downstream chemical steps. Our results resolve the unique and complex chemistry of DpgC, a key enzyme in the biosynthetic pathway of an important class of antibiotics. Mechanistic parallels exist between DpgC and cofactor-dependent flavoenzymes, providing information regarding the general mechanism of enzymatic oxygen activation.
机译:复杂和独特的酶学通常是天然产物的生物合成的背后。本论文的重点是非蛋白质氨基酸如何被生物合成,然后被整合到天然产物中。第二章,第三章和第四章讨论在万古霉素生物合成中发现的独特双加氧酶。第五章详细介绍了生化特性以及对末端非核糖体肽合成酶模块的结构表征的研究。万古霉素生物合成酶DpgC属于一小类氧化酶,不依赖于辅助辅因子或金属离子。尚未建立辅因子非依赖性加氧酶的详细机制。我们已经解决了与结合的底物模拟物复合的这种加氧酶类酶的第一结构。使用设计的合成底物类似物,可以对氧气活化的化学方法有独到的见解。该结构证实不存在辅因子,并且与分子氧一致的电子密度存在于基底上氧化部位附近。分子氧结合在一个小的疏水袋中,底物为下游的化学步骤提供还原能力以活化氧。我们的结果解决了DpgC的独特而复杂的化学反应,DpgC是一类重要抗生素的生物合成途径中的关键酶。 DpgC和依赖辅因子的黄素酶之间存在机制上的相似性,从而提供了有关酶活性氧激活的一般机制的信息。

著录项

  • 作者

    Widboom, Paul Fredrick.;

  • 作者单位

    Boston College.;

  • 授予单位 Boston College.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号