首页> 外文学位 >Fluid-structure interaction of large amplitude structure vibrations and moderately high Reynolds number turbulent flows.
【24h】

Fluid-structure interaction of large amplitude structure vibrations and moderately high Reynolds number turbulent flows.

机译:大振幅结构振动和中等高雷诺数湍流的流固耦合。

获取原文
获取原文并翻译 | 示例

摘要

Fluid-structure interaction (FSI) effects often must be considered when flexible structures are subjected to unsteady flows. Large-scale unsteady flows may excite structural vibrations significantly and cause the fluid flow to be altered by the large amplitude vibrations. In this research, a partitioned FSI modeling approach is employed to simulate such large amplitude structural vibrations interacting with turbulent flows. The partitioned approach is based on the fixed-point iteration scheme that tightly couples the in-house finite-element structural code FEANL and the open-source computational-fluid dynamics (CFD) library package Open- FOAM. For turbulent flow predictions, hybrid turbulence models such as Delayed Detached-Eddy-Simulation (DDES) and k-o SST-SAS are employed. Both of the models are capable of simulating highly unsteady and separated turbulent flows. The simulations conducted in this work are as follows; vortex-induced vibration of a flexible plate (2-dimensional), a rigid-fixed and self oscillating cylinder at Re = 5,000 (3-dimensional), a hydrofoil vibration due to strong upstream vortices in a 12"-diameter water tunnel, and a propeller in a crashback condition. Modeling difficulties of these cases increase in terms of flow dimensionality (2- or 3-dimensional), flow type (laminar or turbulent), temporal and spatial resolution, etc. Therefore, the order of the simulations presented from Chapters 3 through 5 is consequential in that the simulation cases of Chapter 4 are not possible without Chapter 3 and, Chapter 5 likewise. The objective of the rigid-fixed and self oscillating cylinder simulations is to perform CFD and FSI validation studies. After the validation work, the CFD and FSI solver are extensively employed to simulate the aforementioned cases. In all of the simulations performed in this work, comparisons against numerical and experimental data available in the field of fluid-structure interaction are extensively performed. The results of the fixed cylinder simulation show that the unsteady, separated and shedding flow field is well captured. In particular, the force statistics (lift and drag coefficients), correlation of pressure and pressure profiles show good agreement with experimental data. For the self-oscillating cylinder simulation, vibration amplitudes in lock-in shows favorable agreement with experimental data, and especially, the amplification of drag coefficient due to vibration shows great agreement with both analytical and experimental data. For the flexible hydrofoil simulation, results show that the structural response is well captured based on comparisons against tip deflection and reaction force experimental data. Time-averaged flow fields are compared with the particle-image velocimetry (PIV) and laser-Doppler velocimetry (LDV) data. Numerical and experimental flow field data exhibit good agreement both qualitatively and quantitatively. The results of the rigid propeller simulation show that the unsteady flow field and fluid force imparted on the propeller are well resolved compared to numerical and experimental data published in the propeller research field. This case was used to quantify the anticipated CPU requirements for an FSI simulation of a flexible propeller in a crashback condition. While the CPU requirements were too significant to allow for such a simulation in the present research, they are not prohibitive considering available computation capabilities of typical high-performance computing clusters.
机译:当柔性结构受到非稳定流动时,通常必须考虑流固耦合(FSI)效应。大规模的非定常流动可能会极大地激发结构振动,并导致流体流动因大振幅振动而发生变化。在这项研究中,采用分区FSI建模方法来模拟如此大振幅的结构振动与湍流相互作用。分区方法基于定点迭代方案,该方案将内部有限元结构代码FEANL与开源计算流体动力学(CFD)库程序包Open-FOAM紧密耦合。对于湍流预测,采用了混合湍流模型,例如延迟分离涡流模拟(DDES)和k-o SST-SAS。两种模型都能够模拟高度不稳定和分离的湍流。这项工作中进行的模拟如下:挠性板的涡激振动(二维),Re = 5,000的刚性固定且自激圆柱体(三维),直径为12“的水洞中强大的上游涡流引起的水翼振动以及这些情况的建模难度在流维数(二维或3维),流类型(层流或湍流),时间和空间分辨率等方面都增加了,因此,给出了仿真的顺序从第3章到第5章的结果很重要,因为没有第3章和第5章就不可能进行第4章的模拟案例。刚性固定和自激圆柱体模拟的目的是进行CFD和FSI验证研究。验证工作中,广泛使用CFD和FSI求解器来模拟上述情况,在该工作中执行的所有模拟中,均与流体领域的数值和实验数据进行了比较-结构相互作用被广泛执行。固定气缸模拟的结果表明,很好地捕获了不稳定,分离和脱落的流场。特别是,力统计(升力和阻力系数),压力和压力曲线的相关性与实验数据显示出很好的一致性。对于自激式圆柱体仿真,锁定中的振动幅度与实验数据显示出良好的一致性,特别是由于振动引起的阻力系数的放大与分析和实验数据均具有很大的一致性。对于柔性水翼仿真,结果表明,通过与叶尖挠度和反作用力实验数据进行比较,可以很好地捕获结构响应。将时间平均流场与粒子图像测速(PIV)和激光多普勒测速(LDV)数据进行比较。数值和实验流场数据在定性和定量方面都显示出良好的一致性。刚性推进器仿真结果表明,与在推进器研究领域发表的数值和实验数据相比,施加在推进器上的非稳态流场和流体力得到了很好的解决。该案例用于量化在回冲条件下对挠性螺旋桨进行FSI仿真的预期CPU需求。尽管在当前的研究中CPU需求太大而无法进行这种模拟,但是考虑到典型高性能计算群集的可用计算能力,它们并不是禁止的。

著录项

  • 作者

    Lee, Abe Hyunchoong.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号