首页> 外文学位 >Deterministic Inter-Chip Quantum State Transfer using Superconducting Resonators
【24h】

Deterministic Inter-Chip Quantum State Transfer using Superconducting Resonators

机译:使用超导谐振器的确定性芯片间量子状态转移

获取原文
获取原文并翻译 | 示例

摘要

As the complexity of quantum computers increases, it is likely that enough qubits will be needed that interconnects between qubits in different mounts will be required. This requires the ability to transfer quantum states between flying qubits and fixed logic qubits.;In this thesis, we demonstrate the ability to deterministically transfer quantum states between superconducting qubits on separate chips via a traveling photonic mode. Achieving a deterministic transfer without heralding or feedback requires a shaped release to the photonic mode along with shaping the capture of this mode to minimize reflections. To demonstrate the capability of doing this, we use 6GHz superconducting coplanar resonators with tunable coupling to a coaxial transmission line. We first demonstrate the efficient absorption of a shaped classical drive pulse by measuring the reflected and captured signals. With an exponentially increasing pulse, we demonstrate a deterministic single photon storage efficiency of 97.5%, and with theory for experimental absorption efficiencies with various pulse parameters and shapes. For a separate device designed to compensate for frequency shifts due to varying the coupling, we demonstrate the ability to release a single-frequency shaped pulse into the transmission line.;We then deterministically transfer quantum states between superconducting qubits on separate chips separated by 20 cm of coax. We first demonstrate transfer of single qubit states. We then transfer the single-qubit half of a Bell state, resulting in an inter-chip Bell state with a 73% fidelity. We finally demonstrate using the same hardware to repeat the transfer, a necessary ingredient for use in a fault-tolerant architecture. This inter-chip entanglement will allow for quantum computation using more qubits than what fits in a single mount.
机译:随着量子计算机的复杂性增加,可能需要足够的量子位,从而需要不同安装中的量子位之间的互连。这要求在飞行的量子位和固定的逻辑量子位之间传递量子态的能力。在本文中,我们展示了通过行进的光子模式确定性地在独立芯片上的超导量子位之间传递量子态的能力。要在没有先驱或反馈的情况下实现确定性传输,就需要对光子模式进行定型释放,同时对这种模式的捕获进行整形以最大程度地减少反射。为了证明这样做的能力,我们使用了6GHz超导共面谐振器,该谐振器与同轴传输线的可调耦合。我们首先通过测量反射和捕获的信号来演示对成形经典驱动脉冲的有效吸收。随着脉冲呈指数增加,我们证明了确定性单光子存储效率为97.5%,并且具有各种脉冲参数和形状的实验吸收效率理论。对于设计用于补偿由于耦合变化引起的频率偏移的独立设备,我们展示了将单频整形脉冲释放到传输线中的能力;然后确定性地在相距20 cm的独立芯片上的超导量子位之间传输量子态哄。我们首先展示单个量子位状态的转移。然后,我们转移贝尔状态的单量子位一半,从而使芯片间贝尔状态保真度达到73%。我们最终演示了使用相同的硬件重复传输,这是在容错体系结构中使用的必要组成部分。这种芯片间纠缠将允许使用比单个安装座中更多的量子位进行量子计算。

著录项

  • 作者

    Wenner, James Joseph.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Quantum physics.;Applied physics.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号