首页> 外文学位 >A Quantum Simulation Study of III-V Esaki Diodes and 2D Tunneling Field-effect Transistors
【24h】

A Quantum Simulation Study of III-V Esaki Diodes and 2D Tunneling Field-effect Transistors

机译:III-V Esaki二极管和2D隧穿场效应晶体管的量子模拟研究

获取原文
获取原文并翻译 | 示例

摘要

Tunnel field-effect transistors (TFETs) have long been considered as a replacement technology for metal-oxide-semiconductor field-effect transistors in low power digital applications due to their low OFF-current and small subthreshold swing. These benefits are somewhat neutralized by the low ON-current exhibited by TFETs fabricated with large bandgap semiconductors such as silicon. To offset this drawback, different material systems can be used, with material optimization required for the channel material, the gate stack, and their corresponding geometries. This study considers the novel idea of using 2-dimensional (2D) semiconductors for the channel material in TFETs, and the potential effects of such a channel on the physics of the resulting device. After this theoretical discussion of TFETs, the simulation requirements of such a device are introduced as well as the two quantum simulation systems of choice: the Vienna Ab initio Simulation Package (VASP 5.4) as offered by Materials Design and NanoHUB's NEMO5. Topics examined with simulation theory in mind include the density functional theorem (DFT) and convergence criteria. Previously fabricated Esaki diodes from Pawlik et al. are simulated using NEMO5 and the necessity of bowing application to the tight-binding parameters is shown. Tables clarifying the tight-binding parameters of InGaAs from the NEMO5 all.mat file and their associated bowing parameters are included. The simulations performed with the bowing parameters included are shown to match the experimental data almost exactly. Initial VASP 5.4 simulations for GaAs and InAs are shown and the practicality of DFT using the generalized gradient approximation (GGA), HSE06 with GGA, and Hartree-Fock methods is discussed; HSE06 with GGA is shown to produce simulations closest to reality, though there is a significant computation time trade-off. A designed experiment varying the lattice constants of MoS2 and WTe2 is performed and included as an example of the simulation systems capabilities. A plot of VASP 5.4 and NEMO5 MoS 2 bandstructure results is also included.
机译:隧道场效应晶体管(TFET)长期以来一直被认为是低功率数字应用中的金属氧化物半导体场效应晶体管的替代技术,因为它们的截止电流低且亚阈值摆幅小。用大型带隙半导体(例如硅)制造的TFET呈现出的低导通电流在某种程度上抵消了这些好处。为了弥补这一缺陷,可以使用不同的材料系统,并针对通道材料,浇口堆叠及其相应的几何形状进行材料优化。这项研究考虑了将二维(2D)半导体用于TFET中的沟道材料的新颖思想,以及这种沟道对最终器件物理性能的潜在影响。在对TFET进行了理论讨论之后,介绍了这种器件的仿真要求以及所选择的两个量子仿真系统:Materials Design提供的Vienna Ab initio Simulation Package(VASP 5.4)和NanoHUB的NEMO5。考虑到模拟理论的主题包括密度泛函定理(DFT)和收敛准则。 Pawlik等人先前制造的Esaki二极管。使用NEMO5进行了模拟,并显示了向紧束缚参数弯曲应用的必要性。表格中阐明了NEMO5 all.mat文件中InGaAs的紧密结合参数及其相关的弯曲参数。显示了包括弯曲参数在内的仿真结果,几乎可以与实验数据完全匹配。给出了对GaAs和InAs的初始VASP 5.4仿真,并讨论了使用广义梯度近似(GGA),带GGA的HSE06和Hartree-Fock方法进行DFT的实用性。带有GGA的HSE06被证明可以产生最接近实际的仿真,尽管在计算时间上存在很大的取舍。进行了改变MoS2和WTe2晶格常数的设计实验,并将其作为仿真系统功能的示例。还包括VASP 5.4和NEMO5 MoS 2能带结构结果图。

著录项

  • 作者

    Cadareanu, Patsy.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Electrical engineering.;Quantum physics.
  • 学位 M.S.
  • 年度 2018
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号