首页> 外文学位 >Solution Processable Novel Organic Electronic Devices for New Generation Biomedical Applications.
【24h】

Solution Processable Novel Organic Electronic Devices for New Generation Biomedical Applications.

机译:适用于新一代生物医学应用的可处理的新型有机电子设备。

获取原文
获取原文并翻译 | 示例

摘要

The following dissertation addresses a novel low cost process developed to fabricate a Vertical Organic Field Effect Transistor (VOFET). The solution processable VOFET is designed, fabricated and tested in the context of bioengineering domains. The scope of distinct biomedical applications has also been explored.;Organic thin-film transistors are gathering industrial attention as a potential candidate for future electronics analogous to silicon technology. Low fabrication cost, structural miniaturization and low operational voltage are the challenges for fabricating an Organic Field Effect Transistor (OFET). To create these devices, OFETs require new design paradigms and wet processing routes. However, conventional lateral OFET geometry cannot satisfy these demands because of process complexities and the high cost to achieve sub-micron channel length. Despite these barriers, solvent sensitivity towards organic semiconductors, electrode patterning and masking make this process more challenging than are associated with current technologies. Therefore, the need for production of a low cost high efficiency OFET is of high importance. The soluble organic semiconductor exhibits promising device properties. The growing demand of organic electronics poses great difficulty in adapting standard photolithography patterning for fabrication. The main issue is incompatibility in handling organic materials. To circumvent these challenges, a novel fabrication process has been developed to build OFETs in vertical geometry. The novelty of this process allows for creation of sub-micron channel devices at very low cost.;Solution processed VOFET devices are fabricated using a 13,6-N-sulfinylacetamidopentacene (NSFAAP) precursor. Low cost fabrication techniques such as spin coating and drop casting are employed for achieving submicron channel length. Nanoscale devices, i.e. channel lengths, L=265nm, 300nm and 535nm, are respectively fabricated using the spin coating technique. Output characteristics are recorded at an operational voltage of 1volt. Short channel effects dominate the device performance, resulting in a linearity effect in I-V characteristics. Strategies, such as perforated source electrode design and drop casting techniques, are evolved and employed to minimize the short channel effects.;Space Charge Limited Current (SCLC) effects, better known as short channel effects, are observed during I-V characterizations at high longitudinal fields. The drop casting technique is used over Patterned Electrode (PE) for reducing these SCLC effects. Thick channel devices, i.e. L=2microm, are fabricated to minimize the SCLC effects. Low cost polyimide 3M kapton tape is used as masking material in between the stacked layers. Time-temperature balance is optimized during the precursor to pentacene growth process. Metrological characterizations such as TEM, SEM, AFM, Raman Spectroscopy and X-RD are performed to confirm the precursor to pentacene conversion. AFM scanning illustrates dendritic pentacene molecular growth at 170°C annealing. Consequently, the conversion temperature is optimized around 200°C.;In life sciences, there is always striving for translational technology development that can mimic, integrate and manipulate the biological system. Electrical signals enhance the capabilities of electronics to interact and understand the signaling pathways in a biological system. Keeping this in view, the potential applications into biomedical areas, such as flexible sensors and biomedical imagers, are proposed. VOFET has been proposed as a mainstay for flexible cardiac sensors and as imagers. OFET sensors could be designed to cover highly stretchy and arbitrary cardiac tissue. Sensor web integration with pacemakers and Implantable Cardioverter Defibrillator (ICD) device systems has been proposed. The OFET imaging sensor holds potential for early detection of cancer by detecting nuclear level changes in breast cancer images. Nuclear pleomorphic (shape and size distortion of cancerous nuclei) feature detection and analysis could be a step forward in the direction of digital pathology. The conventional analysis approach is time-consuming and error prone as it depends on visual inspection by pathologists. The proposed approach is parallel in nature and supports the existing method of cancer detection.
机译:下面的论文讨论了一种新颖的低成本工艺,该工艺开发用于制造垂直有机场效应晶体管(VOFET)。可解决方案的VOFET是在生物工程领域进行设计,制造和测试的。还探索了独特的生物医学应用的范围。有机薄膜晶体管作为与硅技术类似的未来电子技术的潜在候选者正在引起工业关注。低制造成本,结构小型化和低工作电压是制造有机场效应晶体管(OFET)的挑战。为了创建这些设备,OFET需要新的设计范例和湿法加工路线。然而,由于工艺复杂和获得亚微米沟道长度的高成本,传统的横向OFET几何形状不能满足这些要求。尽管有这些障碍,但溶剂对有机半导体的敏感性,电极图案和掩膜使该过程比现有技术更具挑战性。因此,非常需要生产低成本,高效率的OFET。可溶性有机半导体表现出有希望的器件性能。有机电子产品的增长需求在使标准的光刻图案适应制造方面提出了很大的困难。主要问题是在处理有机材料时不兼容。为了克服这些挑战,已经开发了一种新颖的制造工艺来构建垂直几何结构的OFET。该工艺的新颖性使得可以以非常低的成本创建亚微米沟道器件。使用13,6-N-亚磺酰基乙酰酰胺基并五苯(NSFAAP)前驱体制造了经过溶液处理的VOFET器件。采用低成本的制造技术,例如旋涂和滴铸,以实现亚微米的沟道长度。使用旋涂技术分别制造纳米级器件,即通道长度L = 265nm,300nm和535nm。在1V的工作电压下记录输出特性。短通道效应支配了器件性能,导致了I-V特性的线性效应。发展了诸如穿孔源电极设计和液滴浇铸技术之类的策略,并将其用于最小化短沟道效应。在高纵向场的IV表征期间观察到空间电荷限制电流(SCLC)效应,即众所周知的短沟道效应。 。滴铸技术用于图案化电极(PE)上,以减少这些SCLC效应。制造厚的沟道器件,即L = 2微米,以最小化SCLC效应。低成本的聚酰亚胺3M宽胶带被用作堆叠层之间的遮盖材料。在并五苯生长的前体过程中优化了时间-温度平衡。进行了诸如TEM,SEM,AFM,拉曼光谱和X-RD的计量学表征,以确认前五苯并苯的转化。 AFM扫描显示在170°C退火下树枝状并五苯分子的生长。因此,转化温度可在200°C左右优化。在生命科学中,一直在努力开发可模仿,整合和操纵生物系统的转化技术。电信号增强了电子设备与生物系统相互作用和理解信号通路的能力。考虑到这一点,提出了在生物医学领域中的潜在应用,例如柔性传感器和生物医学成像仪。 VOFET已被提议作为柔性心脏传感器和成像仪的支柱。 OFET传感器可以设计成覆盖高度伸展的任意心脏组织。已提出传感器网络与起搏器和植入式心脏复律除颤器(ICD)设备系统的集成。 OFET成像传感器通过检测乳腺癌图像中的核水平变化,具有早期发现癌症的潜力。核多形性(癌核的形状和大小变形)特征检测和分析可能是朝数字病理学方向迈出的一步。传统的分析方法既费时又容易出错,因为它取决于病理学家的目视检查。所提出的方法本质上是并行的,并且支持现有的癌症检测方法。

著录项

  • 作者

    Puri, Munish.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号