首页> 外文学位 >Learning-based Curvilinear Structure Analysis in Medical Images.
【24h】

Learning-based Curvilinear Structure Analysis in Medical Images.

机译:医学图像中基于学习的曲线结构分析。

获取原文
获取原文并翻译 | 示例

摘要

Analysis of curvilinear structures is an important problem in computer-aided diagnosis and image guided interventions with applications such as vessel structure classification and branching structure detection in mammographic images, vessel segmentation in retinal images, deformable tracking of curvilinear structures in X-ray sequences. Curvilinear structure analysis is often challenging due to large variations in their appearances and profiles, as well as image noise. Also, low visibility and poor image quality due to a low dose of radiations in interventional imaging make the task more difficult, especially in breast mammographic images and dynamic X-ray images. Furthermore, for curvilinear structure tracking, these structures undergo complex deformable motion as a result of complex 3D anatomical movements projected onto the 2D image plane. In this dissertation, we mainly focus on curvilinear structure analysis of mammographic images, retina images and X-ray images. These tasks include vessel structure classification, branching structure detection, vessel segmentation and curvilinear structure deformable tracking.;For vessel structure classification, we present a framework using the bag-of-words model and histogram intersection (HI) similarity measure. We first use the bag-of-words model for image representation, which captures the texture information by collecting local patch statistics. Then, we propose applying normalized histogram intersection as similarity measure. Finally, the classification is achieved by combining KNN classifier or support vector machines (SVM). The proposed method is evaluated on a galactographic dataset and compared with several previously used methods. We show that both normalized HI and HI+SVM outperform previous state-of-the-art methods. We also notice that, when using KNN classifiers, normalization is an important step that helps to improve the accuracy of histogram similarities.;For branching structure detection in mammographic images, we describe an approach to automatically detect branching structure region-of-interest (ROI) in clinical breast images. We develop a boosting-based framework using AdaBoost algorithm and Haar wavelet features. In order to keep a single ROI of an input image in the detection, candidates ROIs with spatial overlap are merged according to their confidence scores. We compare three filtering strategies to eliminate false positives. These strategies differ in the approach to fuse confidence scores by summation, averaging or selecting the maximum one. Experiments on clinical galactograms show the presented false positive filtering strategies achieve promising results.;For curvilinear structure segmentation, we present a learning-based framework for vessel segmentation on mammographic images and retinal images. Typically, our proposed framework is composed by ensemble learning algorithm and hybrid features to represent an instance. In vessel segmentation of mammographic images, the ensemble learning algorithm is a forest with boosting trees. The feature pool contains local, Gabor and Haar features. Our method is tested on a real dataset with 20 anonymous mammographic images and achieves 10.06% equal error rate of breast vessel segmentation. Similarly, we extend the work on vessel segmentation in breast mammographic images to retinal images. We design a hybrid feature pool containing recently invented descriptors including the stroke width transform (SWT) and Weber's local descriptors (WLD), as well as classical local features including intensity values, Gabor responses and vesselness measurements. Secondly, we encode context information by sampling the hybrid features from an orientation invariant local context. The ensemble learning algorithm is a random forest to fuse the rich information encoded in the hybrid context-aware features. We apply the proposed method to retinal vessel segmentation and evaluate it using three publicly available datasets: the DRIVE dataset, the STARE dataset and the High-Resolution Fundus (HRF) Image Database (HRFID). Quantitative evaluation results demonstrate the effectiveness of our approach.;For curvilinear structure deformable tracking, we introduce two methods to address the problem of robust tracking of vascular structure and intravascular devices in X-ray images. The first approach uses the Bayesian filtering framework and data driven measurement models to estimate the deformable motion field. We first convert the maximum likelihood estimation of the motion field to an energy minimization problem, and then use a variational solution to solve it. A randomized regression forest is employed to learn the probability density function of the measurements from training samples with known displacements. The results demonstrate that our approach outperforms the registration-based solution. The second approach uses the tensor-based algorithm with model propagation. Specifically, the deformable tracking is formulated as a multi-dimensional assignment problem which is solved by rank-1 ℓ1 tensor approximation. The model prior is propagated in the course of deformable tracking. Both the higher order information and the model prior provide powerful discriminative cues for reducing ambiguity arising from the complex background, and consequently improve the tracking robustness. The results show, both quantitatively and qualitatively, that our approach achieves a mean tracking error of 1.4 pixels for vascular structure tracking and 1.3 pixels for catheter tracking.
机译:曲线结构的分析是计算机辅助诊断和图像引导干预中的一个重要问题,其应用包括乳腺摄影图像中的血管结构分类和分支结构检测,视网膜图像中的血管分割,X射线序列中曲线结构的可变形跟踪。由于其外观和轮廓以及图像噪声的巨大差异,曲线结构分析通常具有挑战性。而且,由于介入成像中的低剂量辐射而导致的低可见性和较差的图像质量使任务更加困难,尤其是在乳房X线照片和动态X射线图像中。此外,对于曲线结构跟踪,由于投影到2D图像平面上的复杂3D解剖运动,这些结构经历了复杂的可变形运动。本文主要对乳房X线照片,视网膜图像和X射线图像进行曲线结构分析。这些任务包括血管结构分类,分支结构检测,血管分割和曲线结构可变形跟踪。对于血管结构分类,我们提出了一种使用词袋模型和直方图相交(HI)相似性度量的框架。我们首先使用词袋模型进行图像表示,该模型通过收集本地补丁统计信息来捕获纹理信息。然后,我们建议将归一化直方图相交作为相似性度量。最后,通过组合KNN分类器或支持向量机(SVM)来实现分类。拟议的方法是在全集数据集上评估的,并与几种先前使用的方法进行了比较。我们显示标准化的HI和HI + SVM均优于以前的最新方法。我们还注意到,当使用KNN分类器时,归一化是有助于提高直方图相似度准确性的重要步骤。;对于乳腺X线照片中的分支结构检测,我们描述了一种自动检测分支结构感兴趣区域(ROI)的方法。 )在临床乳房图像中。我们使用AdaBoost算法和Haar小波特征开发了一个基于Boosting的框架。为了在检测中保持输入图像的单个ROI,根据其置信度分数合并具有空间重叠的候选ROI。我们比较了三种过滤策略以消除误报。这些策略的不同之处在于,通过求和,取平均值或选择最大值来融合置信度得分。在临床半乳糖像上的实验表明,所提出的假阳性过滤策略取得了可喜的结果。对于曲线结构分割,我们提出了一种基于学习的乳腺X线照片和视网膜图像血管分割的框架。通常,我们提出的框架是由集成学习算法和混合特征组成的,以代表一个实例。在乳腺X线摄影图像的血管分割中,集成学习算法是一棵有助长树的森林。要素池包含本地,Gabor和Haar要素。我们的方法在带有20个匿名乳房X线照片的真实数据集上进行了测试,并实现了10.06%的相等的乳腺血管分割错误率。同样,我们将乳腺X线摄影图像中血管分割的工作扩展到视网膜图像。我们设计了一个混合特征池,其中包含最近发明的描述符,包括笔划宽度变换(SWT)和Weber的局部描述符(WLD),以及经典的局部特征,包括强度值,Gabor响应和血管测量。其次,我们通过从方向不变的局部上下文中采样混合特征来对上下文信息进行编码。集成学习算法是一个随机森林,用于融合在混合上下文感知功能中编码的丰富信息。我们将提出的方法应用于视网膜血管分割,并使用三个可公开获得的数据集对其进行评估:DRIVE数据集,STARE数据集和高分辨率眼底(HRF)图像数据库(HRFID)。定量评估结果证明了该方法的有效性。对于曲线结构的可变形跟踪,我们介绍了两种方法来解决在X射线图像中对血管结构和血管内装置进行稳健跟踪的问题。第一种方法使用贝叶斯滤波框架和数据驱动的测量模型来估计可变形运动场。我们首先将运动场的最大似然估计转换为能量最小化问题,然后使用变分解决方案进行求解。采用随机回归森林从已知位移的训练样本中学习测量的概率密度函数。结果表明,我们的方法优于基于注册的解决方案。第二种方法使用带有模型传播的基于张量的算法。特别,可变形跟踪公式化为多维分配问题,可通过rank-1ℓ 1张量逼近来解决。模型先验是在可变形跟踪过程中传播的。高阶信息和模型先验都提供了有力的判别线索,以减少复杂背景引起的歧义,从而提高跟踪的鲁棒性。结果定量和定性地表明,我们的方法对血管结构跟踪的平均跟踪误差为1.4像素,对导管跟踪的平均跟踪误差为1.3像素。

著录项

  • 作者

    Cheng, Erkang.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Computer Science.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号