首页> 外文学位 >Combustion Chemistry and Physics of Ethanol Blends to Inform Biofuel Policy
【24h】

Combustion Chemistry and Physics of Ethanol Blends to Inform Biofuel Policy

机译:乙醇共混物的燃烧化学和物理,以指导生物燃料政策

获取原文
获取原文并翻译 | 示例

摘要

This dissertation provides new fundamental and quantitative understanding of the combustion chemistry and physics of ethanol and ethanol blends. The results provide a means to inform strategic energy policy-making in the transportation sector. Scientifically informed vehicle regulation can drive the development of technologies that optimize fuel performance and minimize pollutant emissions when using ethanol to displace gasoline.;In this work, two experimental facilities were used to study the global reactivity and detailed ignition chemistry of ethanol, iso-octane and ethanol/iso-octane blends at conditions relevant to advanced engine strategies. Rapid compression facility (RCF) studies were used to quantify global reactivity in terms of ignition delay times and to provide new data on the reaction pathways of pollutant species like aldehydes and soot precursors. The RCF ignition study of ethanol/iso-octane blends demonstrated their reactivity tends to increase with the carbon content in the blend within the limits defined by pure ethanol and pure iso-octane across the range of temperatures studied. Furthermore, the reaction pathways of each fuel develop independently with no significant fuel-to-fuel interactions, but with a shared radical pool. At the same conditions of the RCF studies, ignition quality tester (IQT) studies of ethanol/iso-octane blends considered the effects of spray injection physics, stratification and mixing effects on the fuel blend reactivity. The results showed that although thermal-fluid effects reduced the overall reactivity for all the blends studied, the chemistry effects dominate the temperature dependence for all blends and conditions studied.;The results of these studies represent vital data for developing, validating and verifying the combustion chemistry of detailed and reduced chemical kinetic models for ethanol blends, which are used to predict global reactivity and pollutant formation in fundamental and applied combustion systems. The quantitative understanding of the chemistry behind the knock resistance attributes and pollutant formation pathways of ethanol and ethanol blends can allow regulatory agencies to set more ambitious and simultaneously more realistic efficiency and emission standards for integrating ethanol into the transportation infrastructure.
机译:本文为乙醇和乙醇混合物的燃烧化学和物理提供了新的基础和定量的认识。结果提供了一种手段,可以为交通部门的能源战略决策提供依据。科学地了解车辆法规可以推动技术发展,从而在使用乙醇代替汽油时优化燃料性能并减少污染物排放。在这项工作中,两个实验设施用于研究乙醇,异辛烷的整体反应性和详细的点火化学和乙醇/异辛烷的混合物在与先进发动机策略相关的条件下使用。快速压缩设施(RCF)研究用于根据点火延迟时间量化整体反应性,并提供有关醛类和烟灰前体等污染物物种反应途径的新数据。乙醇/异辛烷共混物的RCF点火研究表明,在所研究的温度范围内,其反应性趋于随掺合物中碳含量的增加而增加,该限度由纯乙醇和纯异辛烷定义。此外,每种燃料的反应途径都是独立发展的,没有明显的燃料与燃料相互作用,而是具有共享的自由基库。在RCF研究的相同条件下,乙醇/异辛烷混合物的点火质量测试仪(IQT)研究考虑了喷射物理,分层和混合对燃料混合物反应性的影响。结果表明,尽管热流体效应降低了所研究的所有混合物的整体反应性,但化学效应主导了所研究的所有混合物和条件下的温度依赖性。;这些研究结果代表了开发,验证和验证燃烧的重要数据乙醇混合物的详细和简化的化学动力学模型的化学反应,用于预测基本和应用燃烧系统中的整体反应性和污染物形成。对乙醇和乙醇混合物的抗爆震性属性和污染物形成途径背后的化学成分的定量理解,可以使监管机构设定更宏大的目标,同时制定更现实的效率和排放标准,以将乙醇整合到运输基础设施中。

著录项

  • 作者

    Barraza Botet, Cesar L.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号