首页> 外文学位 >Multi-physics coupled modeling and analysis for the design of high speed valves.
【24h】

Multi-physics coupled modeling and analysis for the design of high speed valves.

机译:用于高速阀设计的多物理场耦合建模和分析。

获取原文
获取原文并翻译 | 示例

摘要

This work involves the development of a new actuation system for high speed valves. The valve actuation system proposed in this work, named as energy coupler actuator (ECA), is to couple the translational valve components (poppet or spool) with a kinetic energy source (pump/motor shaft, flywheel, and etc.). The coupling system can allow dynamic coupling or decoupling to control the valve position. An ECA using a MR fluid coupling was selected to develop the first prototype of an energy coupler actuated valve (ECAV). MR fluid offers many advantages such as symmetric actuation performance to allow high pressure at either port, large and scalable actuation force, proportional control, long stroke in a short time and small moving mass. A unique contribution of this work is the development of valve models, which integrate the finite-element analysis (2D, 2D axisymmetric and 3D) and 1D lumped parameter equations. A multi-physics coupled model for an ECAV system was also developed using this method. The simulation study based on this model was performed to analyze the significant design parameters including dimensional parameters and operating parameters, resulting in two optimal design solutions of an ECA. A prototype ECA was fabricated based on one of the design solutions. The experimental testing of this prototype showed that it is capable of reaching the target 1.5mm stroke, equivalent to a 100 L/min 5 bar according to a CFD solution, within 3ms. Moreover, a 7mm long stroke was achieved in just 7ms. The measurement results corresponded with the simulation results, validating the multi-physics model developed for this prototype ECA.
机译:这项工作涉及开发一种用于高速阀的新型致动系统。在这项工作中提出的阀致动系统,称为能量耦合器致动器(ECA),用于将平移阀组件(提升阀或阀芯)与动能源(泵/马达轴,飞轮等)耦合。联接系统可以允许动态联接或去联接来控制阀位置。选择使用MR液力偶合器的ECA来开发能量耦合器致动阀(ECAV)的第一个原型。 MR流体具有许多优势,例如对称的驱动性能,以允许任一端口都具有高压,较大且可扩展的驱动力,比例控制,短时间内的长冲程和较小的运动质量。这项工作的独特贡献是阀门模型的开发,该模型集成了有限元分析(2D,2D轴对称和3D)和1D集总参数方程式。使用该方法还开发了ECAV系统的多物理场耦合模型。进行了基于该模型的仿真研究,以分析重要的设计参数,包括尺寸参数和运行参数,从而得出ECA的两个最佳设计解决方案。基于其中一种设计解决方案制造了ECA原型。该原型的实验测试表明,它能够在3ms内达到目标1.5mm行程,相当于根据CFD解决方案的100 L / min 5 bar。此外,仅7毫秒即可实现7毫米长的行程。测量结果与仿真结果一致,验证了为该原型ECA开发的多物理场模型。

著录项

  • 作者

    Xiong, Shaoping.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mechanical engineering.;Systems science.;Agricultural engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号