首页> 外文学位 >Spin-dependent shot noise in semiconductor and graphene nanostructures.
【24h】

Spin-dependent shot noise in semiconductor and graphene nanostructures.

机译:半导体和石墨烯纳米结构中自旋相关的散粒噪声。

获取原文
获取原文并翻译 | 示例

摘要

Shot noise is the name given to the time-dependent non-equilibrium current (or voltage) fluctuations which persist down to zero temperature and are fundamentally related to the discrete nature of the electron charge. Over the past two decades it has become a major tool for gathering information about microscopic mechanisms of transport and correlations between charges which cannot be extracted from traditional conductance measurements. Recently a handful of theoretical and experimental studies have suggested that shot noise in systems with spin-dependent interactions provides a sensitive probe to differentiate between scattering from magnetic impurities, spin-flip scattering, and continuous spin precession effects on semiclassical or quantum transport of injected spin-polarized currents. This is due to the fact that any spin flip converts spin-↑ subsystem particle into a spin-↓ subsystem particle, where the two subsystems differ when spin degeneracy is lifted. Thus, the nonconservation of the number of particles in each subsystem generates additional source of current fluctuations. Here we generalize the scattering theory of quantum shot noise to include the full spin-density matrix of electrons. This formalism yields the spin-resolved shot noise power applicable for a generic spintronic device where partially polarized charge current or even pure spin current is injected from a spin-filtering or ferromagnetic electrode into a quantum-coherent nanostructure governed by arbitrary spin-dependent interactions.;The developed formalism [2, 5] is applied in Chapter 5 to diffusive multichannel quantum wires with the Rashba spin-orbit (SO) coupling sandwiched between ferromagnetic source and ferromagnetic or normal drain electrodes. The crucial role played by the SO interactions in all-electrical control of spin in semiconductor nanostructures has ignited recent studies of their signatures on the shot noise. We investigate what is the effect of the Rahsba SO coupling on the shot noise and look for a relationship between the degree of quantum coherence of transported spins and the shot noise of charge currents. This allows us to propose electrical shot noise-based scheme to probe spin as a measurable degree of freedom.;Injection of unpolarized charge current through the longitudinal leads of a four-terminal two-dimensional electron gas with the Rashba SO coupling and SO scattering off extrinsic impurities is responsible not only for the pure spin Hall current in the transverse leads, but also for nonequilibrium random time-dependent current fluctuations. We employ the spin-dependent scattering approach in Chapter 6 [3, 5] to analyze the shot noise of transverse pure spin Hall current and zero charge current, or transverse spin current and non-zero charge Hall current, driven by unpolarized or spin-polarized injected longitudinal charge current, respectively. Since any spin-flip acts as an additional source of noise, we argue that these shot noises provide a unique experimental tool to differentiate between intrinsic and extrinsic SO mechanisms underlying the spin Hall effect in paramagnetic devices.;Recently graphene---a one-atom-thick crystal of carbon atoms arranged into a honeycomb lattice---has emerged as one of the most promising materials for future nanoelectronic devices. It combines exceptional sample quality and accessibility with the unique possibility to explore quantum electrodynamics phenomena in a condensed matter system since current is carried by massless Dirac fermions behaving as charged neutrinos. Furthermore, special nanostructures derived from graphene, the so called zigzag nanoribbons, favor ferromagnetic ordering along their edges. Recently shot noise measurements have been used to characterize ballistic transport through evanescent states introduced into clean undoped graphene strips by the attached metallic electrodes. We demonstrate in Chapter 7 [4] that this shot noise can be substantially modified in zigzag nanoribbons due to the topology of their edges inducing localized states that facilitate ferromagnetic ordering along the edge when electron-electron interactions are taken into account.
机译:散粒噪声是随时间变化的非平衡电流(或电压)波动的名称,该波动持续到零温度,并且从根本上与电子电荷的离散特性有关。在过去的二十年中,它已成为收集有关微观传输机制和电荷之间相关性信息的主要工具,而这些信息无法从传统电导测量中提取。最近,一些理论和实验研究表明,具有自旋依赖性相互作用的系统中的散粒噪声提供了一种灵敏的探针,可区分磁性杂质的散射,自旋翻转散射以及对注入的自旋的半经典或量子传输的连续自旋进动的影响极化电流。这是由于以下事实:任何自旋翻转都将spin-↑子系统粒子转换为spin-↓子系统粒子,在这种情况下,解除自旋简并性时两个子系统会有所不同。因此,每个子系统中粒子数量的不守恒会产生电流波动的其他来源。在这里,我们概括了量子散粒噪声的散射理论,以包括电子的完整自旋密度矩阵。这种形式主义产生了自旋分辨散粒噪声功率,适用于通用自旋电子器件,其中自旋过滤或铁磁电极将部分极化的电荷电流或什至是纯自旋电流注入到由任意自旋相关的相互作用控制的量子相干纳米结构中。 ;发达的形式主义[2,5]在第5章中应用于具有Rashba自旋轨道(SO)耦合夹在铁磁源与铁磁或正常漏电极之间的扩散多通道量子线。 SO相互作用在半导体纳米结构自旋的全电子控制中发挥的关键作用激发了有关散粒噪声特征的最新研究。我们研究了Rahsba SO耦合对散粒噪声的影响,并寻找了传输自旋的量子相干度与电荷电流散粒噪声之间的关系。这使我们能够提出一种基于电子散粒噪声的方案,以将自旋作为可测量的自由度进行探测。;通过四端二维电子气的纵向引线通过Rashba SO耦合和SO散射来注入非极化电荷电流外在杂质不仅负责横向引线中的纯自旋霍尔电流,还负责非平衡随时间变化的随机电流波动。我们在第6章[3,5]中采用了与自旋相关的散射方法,以分析由非极化或自旋驱动的横向纯自旋霍尔电流和零电荷电流或横向自旋电流和非零电荷霍尔电流的散粒噪声。极化注入的纵向电荷电流,分别。由于任何自旋翻转都是额外的噪声源,因此我们认为这些散粒噪声提供了一种独特的实验工具,可以区分顺磁器件中自旋霍尔效应的内在和外在的SO机制。排列成蜂窝状晶格的碳原子原子厚晶体已成为未来纳米电子器件最有希望的材料之一。它结合了卓越的样品质量和可及性,并具有探索凝聚态系统中量子电动力学现象的独特可能性,因为电流是由表现为带电中微子的无质量狄拉克费米子承载的。此外,源自石墨烯的特殊纳米结构,即所谓的之字形纳米带,有利于沿其边缘的铁磁排序。最近,散粒噪声测量已用于表征通过through逝状态的弹道传输,该e逝状态是通过连接的金属电极引入干净的未掺杂石墨烯条中的。我们在第7章[4]中证明,由于边缘的拓扑结构会诱导局部状态,当考虑电子-电子相互作用时,促进沿边缘的铁磁有序化,这种散粒噪声可以在之字形纳米带中得到实质性的修改。

著录项

  • 作者

    Dragomirova, Ralitsa L.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号