首页> 外文学位 >Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station.
【24h】

Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station.

机译:国际空间站大型毛细管热流实验的可行性分析。

获取原文
获取原文并翻译 | 示例

摘要

The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs.;This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver.;This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.
机译:随着空间探索的到来,对微重力流体动力学的研究应运而生。特别是,毛细管研究在1960年代在液体沉降和界面动力学方面取得了飞跃。由于大型航天器液体系统(例如燃料箱)中固有的温度变化,在气液界面上会产生力,从而引起热毛细流动。迄今为止,通常在地面条件下以小型,理想的研究几何形状对热毛细流进行了研究。当前和将来的大型储罐和硬件的长度为1至3m是基于硬件而不是研究进行设计的,这使得航天系统设计人员没有能够有效创建安全,高效设计的技术工具。大型热毛细管流动实验,利用温度变化来驱动流动。螺旋通道几何结构的长度范围从1到2.5m,可以进行大长度的热毛细管流动实验,以适合看似很小的国际空间站(ISS)设施,例如流体集成式机架(FIR)。初步调查确定了拟议的实验在遵守FIR设施限制的前提下产生了可测量的数据。本文的计算部分着重于使用Surface Evolver研究燃料箱和油库的功能几何结构。这项工作概述了ISS FIR的大型热毛细管流动实验的设计。这项工作的结果改善了对热毛细流动的理解,从而改善了预测大尺度热毛细流动中热量和质量传递的技术工具。如果没有了解这些系统中热毛细管流的工具,工程师就不得不设计更大,更重的车辆,以确保安全和成功完成任务。

著录项

  • 作者

    Alberts, Samantha J.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Aerospace engineering.;Plasma physics.
  • 学位 M.S.
  • 年度 2014
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号