首页> 外文学位 >Single event transient modeling and mitigation techniques for mixed-signal delay locked loop (DLL) and clock circuits.
【24h】

Single event transient modeling and mitigation techniques for mixed-signal delay locked loop (DLL) and clock circuits.

机译:用于混合信号延迟锁定环(DLL)和时钟电路的单事件瞬态建模和缓解技术。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this PhD work has been to investigate, model, test, develop and provide hardening techniques and guidelines for the mitigation of single event transients (SETs) in analog mixed-signal (AMS) delay locked loops (DLLs) for radiation-hardened applications.;Delay-locked-loops (DLLs) are circuit substructures that are present in complex ASIC and system-on-a-chip designs. These circuits are widely used in on-chip clock distribution systems to reduce clock skew, to reduce jitter noise, and to recover clock signals at regional points within a global clock distribution system. DLLs are critical to the performance of many clock distribution systems, and in turn, the overall performance of the associated integrated system; as such, complex systems often employ multiple DLLs for clock deskew and distribution tasks. In radiation environments such as on-orbit, these critical circuits represent at-risk points of malfunction for large sections of integrated circuits due to vulnerabilities to radiation-generated transients (i.e. single event transients) that fan out across the system.;The analysis of single event effects in analog DLLs has shown that each DLL sub-circuit primitive is vulnerable to single event transients. However, we have identified the voltage controlled delay line (VCDL) sub-circuit as the most sensitive to radiation-induced single event effects generating missing clock pulses that increase with the operating frequency of the circuit. This vulnerability increases with multiple instantiation of DLLs as clock distribution nodes throughout an integrated system on a chip. To our knowledge, no complete work in the rad-hard community regarding the hardening of mixed-signal DLLs against single event effects (missing pulses) has been developed. Most of the work present in the literature applies the "brute force" and well-established digital technique of triple modular redundancy (TMR) to the digital subcomponents.;We have developed two novel design techniques for the mitigation of DLL missing pulses that are fully implementable in modern CMOS technologies. These techniques offer to the community the choice of hardening using a restoring current technique in the VCDL sub-circuit to inhibit the creation of missing pulse errors, or using a combinational logic error monitoring technique to correct missing pulses after they occur in real time. We have implemented both of these techniques with minimal area and power penalties when compared to TMR. In addition, these hardening techniques have been extrapolated to other clock circuits, such as digital PLLs.;The first hardening technique uses a hardened complementary differential pair VCDL to increase the critical charge (Qcrit) necessary for single event transient generation and thus mitigate missing pulses at the source. Our implementation of this technique at 180 nm, 90 nm and 40 nm required less than a 2% area penalty over a non-hardened design. To experimentally validate this technique, hardened VCDLs were designed and fabricated in 180-nm IBM and 40-nm UMC technologies, then tested at the Naval Research Lab in Washington D.C. The second hardening technique, based on combinational logic pulse monitoring, uses an error correction circuit to mitigate the missing pulses as they occur. This ECC technique is implemented via a "peeled" VCDL (i.e. each transistor is split in area but doubled in multiplicity). We have shown the effectiveness of this technique by implementing it in a Xilinx Virtex 5 FPGA. Furthermore, this new ECC technique is independent of technology scaling -- a highly valuable attribute for sub-50 nm design applications.;In addition to the formulation, simulation, prototyping, fabrication, and testing of these new hardening solutions, we developed a unique single event analytical model to guide future hardened DLL designs at advanced technology nodes. The model was furthermore generalized to PLL and DLLs. These analytical models were then used to provide a set of equations to the designer for important insight into hardening choices and tradeoffs based on design specifications, in conjunction with a broad set of guidelines for the design of hardened DLLs regarding circuit topology choices and parameter sensitivity on radiation exposure.;We are confident that these results, tools, and guidelines will significantly expand the state-of-the-art in the design of hardened DLL clocking circuits for rad-hard applications.
机译:这项博士学位研究的目的是研究,建模,测试,开发并提供硬化技术和指南,以缓解辐射硬化的模拟混合信号(AMS)延迟锁定环(DLL)中的单事件瞬变(SET)。延迟锁定环(DLL)是复杂的ASIC和片上系统设计中存在的电路子结构。这些电路广泛用于片上时钟分配系统中,以减少时钟偏斜,降低抖动噪声并恢复全局时钟分配系统内区域点的时钟信号。 DLL对许多时钟分配系统的性能以及相关集成系统的整体性能至关重要。因此,复杂的系统通常使用多个DLL来进行时钟去偏斜和分配任务。在辐射环境中(例如在轨环境中),这些关键电路由于在整个系统中散发出来的辐射产生的瞬变(即单事件瞬变)的脆弱性,代表了集成电路大部分的故障危险点。模拟DLL中的单事件效应表明,每个DLL子电路原语都容易受到单事件瞬态的影响。但是,我们已将压控延迟线(VCDL)子电路确定为对辐射引起的单事件效应最敏感,从而产生丢失的时钟脉冲,该时钟脉冲随电路的工作频率而增加。随着DLL的多个实例化(作为整个芯片上集成系统中的时钟分配节点),此漏洞会增加。据我们所知,在抗辐射社区中,关于针对单一事件效应(丢失脉冲)的混合信号DLL的硬化尚无完整的工作。文献中的大多数工作将“蛮力”和行之有效的三重模块冗余(TMR)数字技术应用于数字子组件。我们已经开发出两种新颖的设计技术来缓解DLL丢失脉冲,这些技术可以完全缓解可在现代CMOS技术中实现。这些技术为社区提供了选择硬化方法,即使用VCDL子电路中的恢复电流技术来抑制丢失脉冲错误的产生,或者使用组合逻辑错误监视技术来实时纠正丢失脉冲之后的丢失脉冲。与TMR相比,我们以最小的面积和功耗实现了这两种技术。此外,这些硬化技术已被外推到其他时钟电路,例如数字PLL。第一种硬化技术使用硬化的互补差分对VCDL来增加单事件瞬态生成所需的临界电荷(Qcrit),从而减轻丢失的脉冲从源头上讲。与未硬化的设计相比,我们在180 nm,90 nm和40 nm处实施此技术所需的面积损失不到2%。为了通过实验验证该技术,在180纳米IBM和40纳米UMC技术中设计和制造了硬化的VCDL,然后在华盛顿特区的海军研究实验室进行了测试。第二种硬化技术基于组合逻辑脉冲监视,使用了纠错功能。电路,以减少出现的丢失脉冲。此ECC技术是通过“去皮” VCDL实现的(即,每个晶体管的面积均被分割,但倍数倍增)。通过在Xilinx Virtex 5 FPGA中实现该技术,我们已经展示了该技术的有效性。此外,这项新的ECC技术与技术扩展无关-对于50 nm以下的设计应用而言,这是非常有价值的属性。单事件分析模型,以指导将来在高级技术节点上进行强化的DLL设计。该模型进一步推广到PLL和DLL。然后,这些分析模型用于为设计人员提供一组方程式,以便根据设计规范对强化选择和折衷方案提供重要见解,并结合有关电路拓扑选择和参数敏感性的强化DLL设计的广泛指导原则我们相信,这些结果,工具和指南将极大地扩展抗辐射应用的强化DLL时钟电路设计的最新技术。

著录项

  • 作者

    Maillard, Pierre.;

  • 作者单位

    Vanderbilt University.;

  • 授予单位 Vanderbilt University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号