首页> 外文学位 >Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid.
【24h】

Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid.

机译:固态变压器接口直流微电网的电源和能量管理策略。

获取原文
获取原文并翻译 | 示例

摘要

As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST.;The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing between DC MG and SST, State of Charge (SOC) for battery, are both considered in the system energy management strategy. Then the DC MG output power is controllable and the battery is autonomous charged and discharged based on its SOC and system information without communication. The system operation modes are defined, analyzed and the simulation results verify the strategy. The second power and energy management strategy is the hierarchical control. In this control strategy, three-layer control structure is presented and defined. The first layer is the primary control for the DC MG in islanding mode, which is to guarantee the DC MG system power balance without communication to increase the system reliability. The second control layer is to implement the seamless switch for DC MG system from islanding mode to SST-enabled mode. The third control layer is the tertiary control for the system energy management and the communication is also involved. The tertiary layer not only controls the whole DC MG output power, but also manages battery module charge and discharge statuses based on its SOC. The simulation and experimental results verify the methods.;Some practical issues for the SST interfaced DC MG are also investigated. Power unbalance issue of SST is analyzed and a distributed control strategy is presented to solve this problem. Simulation and experimental results verify it. Furthermore, the control strategy for SST interfaced DC MG blackout is presented and the simulation results are shown to valid it. Also a plug and play SST interfaced DC MG is constructed and demonstrated. Several battery and PV modules construct a typical DC MG and a DC source is adopted to simulate the SST. The system is in distributed control and can operate in islanding mode and SST-enabled mode. The experimental results verify that individual module can plug into and unplug from the DC MG randomly without affecting the system stability. Furthermore, the communication ports are embedded into the system and a universal communication protocol is proposed to implement the plug and play function. Specified ID is defined for individual PV and battery for system recognition. A database is built to store the whole system date for visual display, monitor and history query.
机译:由于可再生能源越来越多地应用到我们的日常生活中,如何在分布式可再生能源和储能的基础上构建微电网(MG),然后为常规电力系统提供可靠而灵活的电力当今最热门的话题。与交流微电网(AC MG)相比,直流微电网(DC MG)具有效率高,易于集成直流能源和储能等优点,因此受到越来越多的关注。此外,DC MG系统与配电系统之间的相互作用也是一个重要而实际的问题。在未来可再生电能输送和管理系统中心(FREEDM)中,建立了固态变压器(SST),可以将配电系统直接转换为低交流和直流系统(通常是家庭应用级别)。因此,SST提供了一种新的有前途的解决方案,使低压水平MG代替传统的变压器与配电系统连接。因此,提出了一种SST接口的DC MG。但是,由于系统变得越来越复杂,包括分布式能源,储能,负荷和SST,这也给该系统的设计和控制领域带来了新的挑战。本文的目的是设计一种可靠,灵活的SST。基于可再生能源和储能的DC MG接口,可以在孤岛模式和启用SST的模式下运行。选择双半桥(DHB)作为DC MG中DC / DC转换器的拓扑。分析了DHB的运行程序和平均模型,为系统建模,控制和运行奠定了基础。此外,提出了两种新颖的电力和能源管理策略。第一个是在启用SST模式下运行的DC MG的分布式能源管理策略。在这种方法中,系统不仅处于分布式控制中以提高系统可靠性,而且在系统能量管理策略中都考虑了DC MG和SST之间的功率共享,电池的充电状态(SOC)。然后,可控制DC MG的输出功率,并根据其SOC和系统信息自动对电池进行充电和放电,而无需进行通信。定义,分析了系统的运行模式,仿真结果验证了该策略。第二种电力和能源管理策略是分层控制。在这种控制策略中,提出并定义了三层控制结构。第一层是孤岛模式下DC MG的主要控制,这是为了确保DC MG系统功率平衡而无需通信,以提高系统可靠性。第二个控制层是实现DC MG系统从孤岛模式到启用SST模式的无缝切换。第三控制层是用于系统能量管理的第三级控制,并且还涉及通信。第三层不仅控制整个DC MG输出功率,而且根据其SOC管理电池模块的充电和放电状态。仿真和实验结果验证了该方法的正确性。研究了SST接口DC MG的一些实际问题。分析了SST的功率不平衡问题,并提出了一种分布式控制策略来解决该问题。仿真和实验结果证明了这一点。提出了SST接口DC MG停电的控制策略,并通过仿真验证了该方法的有效性。还构建并演示了即插即用的SST接口DC MG。几个电池和光伏模块构成一个典型的DC MG,并采用DC源来模拟SST。该系统处于分布式控制中,可以在孤岛模式和启用SST的模式下运行。实验结果证明,单个模块可以随机插入DC MG或从DC MG拔出,而不会影响系统稳定性。此外,将通信端口嵌入系统中,并提出了通用通信协议以实现即插即用功能。为单个PV和电池定义了指定的ID,以进行系统识别。建立了一个数据库来存储整个系统日期,以进行可视显示,监控和历史查询。

著录项

  • 作者

    Yu, Xunwei.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Electrical engineering.;Alternative Energy.;Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号