首页> 外文学位 >Enhancement of Pool Boiling Heat Transfer using a Combination of Open Microchannels and Microporous Surfaces.
【24h】

Enhancement of Pool Boiling Heat Transfer using a Combination of Open Microchannels and Microporous Surfaces.

机译:使用开放的微通道和微孔表面的组合来增强水池沸腾的传热。

获取原文
获取原文并翻译 | 示例

摘要

The continuous development of high performance chips and growing miniaturization trend in the electronics and microelectronics industry requires efficient systems removing large amount of heat over a small footprint. It has been experimentally proven that pool boiling has the ability to remove large heat fluxes by maintaining a small value of wall superheat. This heat transfer performance can be further augmented with the use of enhanced surfaces. The present research is focused on developing microporous surface coatings on the plain and microchannel surfaces to further enhance pool boiling heat transfer.;In this work, a two-step electrodeposition technique involving application of high current densities for a short time, followed by a lower current density for a longer time was investigated. This technique was developed to control the pore size and porous layer thickness on copper substrate. Detailed analysis of the electrodeposition process was conducted, and parameters for creating different morphologies for of enhanced surfaces were obtained. Variety of morphologies were prepared and tested for pool boiling heat transfer performance. Cauliflower like morphology yielded maximum critical heat flux (CHF) of 1,490 kW/m2 with degassed water boiling giving maximum heat transfer coefficient of 179 kW/m2°C.;The study was further expanded to microchannel surfaces. The optimal electrodeposition parameters were employed to selectively coat the fin tops of open microchannel structures. Effects of geometrical parameters of the microchannels were investigated on pool boiling performance at atmospheric pressure. A maximum value of critical heat flux of 3,250 kW/m2 was obtained for Chip 9 (fin width = 200 &mgr;m, channel width = 500 &mgr;m and channel depth = 400 &mgr;m) at a wall superheat of 7.3 °C. A record value of heat transfer coefficient of 995 kW/m2°C was achieved for Chip 12 with a different channel width of 762 &mgr;m and a heat flux of 2,480 kW/m2 at a wall superheat of 2.5 °C.;High speed images of the boiling process were obtained and the bubble dynamics and heat transfer mechanism were studied. The bubble growth and heat transfer processes are altered when the boiling takes place preferentially on the fin tops only. The visual studies indicate a microconvective mechanism in which bubbles leaving from the fin tops induce a liquid circulation in the microchannels. A theoretical model of the heat transfer and bubble dynamics was proposed. The model is not a predictive model, but gives a general idea of the heat transfer process.
机译:电子和微电子行业中高性能芯片的不断发展以及微型化趋势的发展,要求高效的系统在较小的占地面积上消除大量的热量。实验已经证明,池沸腾能够通过维持较小的壁过热值来去除大的热通量。通过使用增强的表面可以进一步提高这种传热性能。本研究的重点是在平整和微通道表面上开发微孔表面涂层,以进一步增强池沸腾的热传递。在这项工作中,两步电沉积技术涉及在短时间内施加高电流密度,然后降低电流密度。研究了较长时间的电流密度。开发该技术以控制铜基板上的孔径和多孔层厚度。进行了电沉积过程的详细分析,并获得了用于创建增强表面的不同形态的参数。制备了各种形态并测试了池沸腾传热性能。花椰菜样形态产生的最大临界热通量(CHF)为1,490 kW / m2,脱气水沸腾后的最大传热系数为179 kW / m2°C。该研究进一步扩展到微通道表面。使用最佳电沉积参数来选择性地涂覆开放微通道结构的鳍片顶部。研究了微通道的几何参数对大气压下池沸腾性能的影响。在壁过热为7.3°C的情况下,芯片9(翅片宽度= 200μm,通道宽度= 500μm,通道深度= 400μm)的临界热通量最大值为3,250 kW / m2。 。对于壁厚为2.5°C的不同通道宽度为762μm且热通量为2,480 kW / m2的芯片12,实现了995 kW / m2°C的传热系数的创纪录值。获得了沸腾过程的图像,并研究了气泡动力学和传热机理。当仅在翅片顶部优先进行沸腾时,气泡的生长和传热过程会发生变化。视觉研究表明了一种微对流机制,其中从翅片顶部离开的气泡在微通道中引起液体循环。提出了传热和气泡动力学的理论模型。该模型不是预测模型,而是给出了传热过程的一般概念。

著录项

  • 作者

    Patil, Chinmay.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2014
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号